Python 中文文件统计词频 + 中文词云

本文介绍了如何使用Python进行中文文件的词频统计,展示了一个例子,统计了《三国演义》中的人物出场次数,结果显示曹操、孔明和刘备出现最频繁。此外,还提到了如何解决在生成词云图时可能出现的乱码问题,并提供了相关解决方案的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 词频统计:

import jieba
txt = open("threekingdoms3.txt", "r", encoding='utf-8').read()
words  = jieba.lcut(txt)
counts = {}
for word in words:
    if len(word) == 1:
        continue
    else:
        counts[word] = counts.get(word,0) + 1
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(15):
    word, count = items[i]
    print ("{0:<10}{1:>5}".format(word, count))

结果是:

曹操          946
孔明          737
将军          622
玄德          585
却说          534
关公          509
荆州          413
二人          410
丞相          405
玄德曰         390
不可          387
孔明曰   &nb

好的,关于对英文文件进行词频分析和的操作,我们可以使用Python中的一些第三方库来实现。下面是一个简单的代码示例,你可以根据自己的需求进行修改。 首先,我们需要安装一些必要的库,包括`wordcloud`和`matplotlib`。你可以使用以下命令来安装它们: ``` pip install wordcloud matplotlib ``` 接下来,我们可以使用Python文件读取功能来读取我们要分析的英文文本文件。假设我们已经将文本文件保存在了本地,文件名为`text.txt`,我们可以使用以下代码读取文件内容: ```python with open('text.txt', 'r') as file: text = file.read() ``` 接下来,我们可以使用Python中的`nltk`库来进行词频分析。假设我们已经安装了该库,我们可以使用以下代码实现词频分析: ```python from nltk import FreqDist from nltk.tokenize import word_tokenize # 将文本分 tokens = word_tokenize(text) # 统计词频 fdist = FreqDist(tokens) # 输出前 10 个出现频率最高的 print(fdist.most_common(10)) ``` 最后,我们可以使用`wordcloud`库来生成。以下是一个简单的代码示例: ```python from wordcloud import WordCloud import matplotlib.pyplot as plt # 生成 wordcloud = WordCloud().generate(text) # 显示 plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show() ``` 这样,我们就可以对英文文件进行词频分析和生成了。记得根据自己的需求进行必要的修改哦。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值