Pytorch基本数据类型
基本数据类型:
a = torch. randn( 2 , 3 )
print ( a. type ( ) )
print ( type ( a) )
torch. FloatTensor
torch. Tensor
标量的表示:Dimension 0 / rank 0 通常使用在loss
print ( torch. tensor( 1 . ) )
print ( torch. tensor( 1.3 ) )
tensor( 1 . )
tensor( 1.3000 )
b = torch. tensor( 2.2 )
print ( b. shape)
print ( len ( b. shape) )
print ( b. size( ) )
torch. Size( [ ] )
0
torch. Size( [ ] )
Dimension 1的张量 通常用于偏置(Bias) 线性层(liner input)
. Tensor 接收数据的内容
. FloatTensor 接收的是数据的shape
import numpy as np
import torch
print ( torch. tensor( [ 1.1 ] ) )
print ( torch. tensor( [ 1.1 , 2.2 ] ) )
print ( torch. FloatTensor( 1 ) )
print ( torch. FloatTensor( 2 ) )
data = np. ones( 2 )
print ( data)
print ( torch. from_numpy( data) )
tensor( [ 1.1000 ] )
tensor( [ 1.1000 , 2.2000 ] )
tensor( [ 0 . ] )
tensor( [ 0 . , 0 . ] )
[ 1 . 1 . ]
tensor( [ 1 . , 1 . ] , dtype= torch. float64)
Dimension2的张量 (Liner Input batch)
c = torch. randn( 2 , 3 )
print ( c)
print ( c. shape)
print ( c. size( 0 ) )
print ( c. size( 1 ) )
print ( c. shape[ 1 ] )
Dimension3的张量 通常使用在RNN Input Batch
d = torch. rand( 1 , 2 , 3 )
print ( d)
print ( "d.shape \t:" , d. shape)
print ( "d[0] \t:" , d[ 0 ] )
print ( "list(d.shape) \t:" , list ( d. shape) )
tensor( [ [ [ 0.8113 , 0.7288 , 0.7128 ] ,
[ 0.8423 , 0.1709 , 0.7813 ] ] ] )
d. shape : torch. Size( [ 1 , 2 , 3 ] )
d[ 0 ] : tensor( [ [ 0.8113 , 0.7288 , 0.7128 ] ,
[ 0.8423 , 0.1709 , 0.7813 ] ] )
list ( d. shape) : [ 1 , 2 , 3 ]
Dimension4的张量 CNN [b, c, h, w]
e = torch. rand( 2 , 3 , 28 , 28 )
print ( "e: \t" , e)
print ( "e.shape: \t" , e. shape)
print ( "e.numel: \t" , e. numel)
print ( "e.shape: \t" , e. dim( ) )
e: tensor( [ [ [ [ 0.0064 , 0.9952 , 0.7189 , . . . , 0.5260 , 0.9961 , 0.3329 ] ,
[ 0.0319 , 0.2366 , 0.1659 , . . . , 0.5725 , 0.9700 , 0.3408 ] ,
[ 0.0533 , 0.4911 , 0.5068 , . . . , 0.5154 , 0.3181 , 0.8749 ] ,
. . . ,
[ 0.2711 , 0.4107 , 0.9548 , . . . , 0.0914 , 0.1216 , 0.4669 ] ,
[ 0.3121 , 0.1884 , 0.6874 , . . . , 0.4863 , 0.1310 , 0.8281 ] ,
[ 0.8134 , 0.2958 , 0.7994 , . . . , 0.7888 , 0.0644 , 0.6937 ] ] ,
[ [ 0.6706 , 0.9958 , 0.8819 , . . . , 0.8354 , 0.7882 , 0.2423 ] ,
[ 0.9388 , 0.0550 , 0.6665 , . . . , 0.4306 , 0.0095 , 0.3302 ] ,
[ 0.3554 , 0.9706 , 0.7250 , . . . , 0.6531 , 0.8118 , 0.0519 ] ,
. . . ,
[ 0.9702 , 0.3393 , 0.9195 , . . . , 0.5785 , 0.0750 , 0.5565 ] ,
[ 0.1810 , 0.4161 , 0.6777 , . . . , 0.0729 , 0.1671 , 0.6183 ] ,
[ 0.2405 , 0.1588 , 0.9701 , . . . , 0.6085 , 0.5801 , 0.8102 ] ] ,
[ [ 0.5726 , 0.4358 , 0.5602 , . . . , 0.0822 , 0.4775 , 0.2254 ] ,
[ 0.3146 , 0.2055 , 0.0449 , . . . , 0.7919 , 0.7323 , 0.2093 ] ,
[ 0.7855 , 0.4358 , 0.6886 , . . . , 0.5912 , 0.2422 , 0.1586 ] ,
. . . ,
[ 0.7620 , 0.0566 , 0.2233 , . . . , 0.3073 , 0.0329 , 0.2335 ] ,
[ 0.4894 , 0.1519 , 0.0398 , . . . , 0.6721 , 0.9245 , 0.5043 ] ,
[ 0.2206 , 0.3090 , 0.2272 , . . . , 0.5258 , 0.7253 , 0.2134 ] ] ] ,
[ [ [ 0.7348 , 0.3334 , 0.3664 , . . . , 0.7411 , 0.9987 , 0.0850 ] ,
[ 0.6815 , 0.8772 , 0.6845 , . . . , 0.2191 , 0.6869 , 0.5559 ] ,
[ 0.7102 , 0.8957 , 0.7105 , . . . , 0.6611 , 0.3372 , 0.1313 ] ,
. . . ,
[ 0.7818 , 0.4233 , 0.6212 , . . . , 0.7316 , 0.5175 , 0.7100 ] ,
[ 0.3687 , 0.7642 , 0.5971 , . . . , 0.7126 , 0.0531 , 0.1984 ] ,
[ 0.7542 , 0.5635 , 0.0263 , . . . , 0.9695 , 0.3727 , 0.8665 ] ] ,
[ [ 0.7535 , 0.9495 , 0.9007 , . . . , 0.0361 , 0.9683 , 0.2283 ] ,
[ 0.5435 , 0.4133 , 0.2253 , . . . , 0.1438 , 0.8811 , 0.7469 ] ,
[ 0.9631 , 0.1310 , 0.7819 , . . . , 0.5443 , 0.2486 , 0.4881 ] ,
. . . ,
[ 0.4766 , 0.0668 , 0.0626 , . . . , 0.3374 , 0.1362 , 0.9786 ] ,
[ 0.3321 , 0.4976 , 0.5352 , . . . , 0.4788 , 0.2453 , 0.7434 ] ,
[ 0.4099 , 0.0636 , 0.1159 , . . . , 0.1899 , 0.8210 , 0.5086 ] ] ,
[ [ 0.4633 , 0.9661 , 0.8107 , . . . , 0.2209 , 0.3187 , 0.7845 ] ,
[ 0.0394 , 0.6189 , 0.1503 , . . . , 0.5803 , 0.4563 , 0.8865 ] ,
[ 0.2606 , 0.6595 , 0.5380 , . . . , 0.4935 , 0.3973 , 0.1511 ] ,
. . . ,
[ 0.4009 , 0.7124 , 0.9389 , . . . , 0.9483 , 0.4283 , 0.6653 ] ,
[ 0.3785 , 0.1570 , 0.0520 , . . . , 0.6226 , 0.7004 , 0.8791 ] ,
[ 0.8059 , 0.1177 , 0.8035 , . . . , 0.0045 , 0.3060 , 0.5216 ] ] ] ] )
e. shape: torch. Size( [ 2 , 3 , 28 , 28 ] )
e. numel: < built- in method numel of Tensor object at 0x0000014538BE4228 >
e. dim: 4