Pytorch极简入门教程(十九)——ResNet网络结构

本文介绍了ResNet的基本结构,包括ResnetBaseBlock模块的定义,展示了如何使用两个卷积层和批量归一化进行特征映射,并通过残差连接实现深层网络的有效训练。通过实例代码,读者将理解ResNet在网络深度提升时如何解决梯度消失问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ResNet网络结构

导入必要的模块
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
定义ResnetbaseBlock函数
class ResnetbaseBlock(nn.Module):
    def __init(self, in_channels, out_channels):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False) #padding=1 上下左右都会添加1
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
    def forward(self, x):
        # residual 为上一层的输出
        residual = x
        out = self.conv1(x)
        out = F.relu(self.bn1(out), inplace=True)
        out = self.conv2(out)
        out = F.relu(out)
        # f(x) + x
        out += residual
        return F.relu(out)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值