来了老弟,如何把别人的数据库文件附加到自己的数据库里

本文详细介绍如何在团队协作中,将他人设计的数据库文件安全转移至个人数据库,包括数据库分离、文件拷贝、权限设置及数据附加的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在和别人一起开发项目的时候,然后我们又需要到数据库,而这时你的小伙伴是负责设计数据库的,等他弄完数据库你想要过来的时候,这时我们就需要先把数据文件从对方的的数据库中分离出来(下面会讲到如何把数据从数据库中分离出来的),然后才能拷贝到你的的电脑上,而拷到了你的电脑上可不是马上就能把数据文件附加进你的数据库窝,还需要设置一波权限(这个在下面会具体说),弄完前面那些就可以直接在数据库附加数据了

总的来说我们要把从别人的数据库那拿过来的数据库文件附加到到你自己的数据库中需要以下几种操作

  1. 在对方数据库把数据库文件分离出来
  2. 把分离出来的数据库文件拷到你的电脑上
  3. 进行一波给权限操作
  4. 最后到数据库里面附数据

好了,下面送上具体教程

1.数据库分离数据

如下图一先在选中你要分离的数据库文件,然后右击,再选中任务,之后你就会看到分离这个字段后直接点击它,点击之后的话会弹出图二那样的模态框,我们直接点击确定就完成分离这项操作了!
在这里插入图片描述
图一

在这里插入图片描述
图二

2.拷贝数据库文件

把下图的两个文件给拷到你的电脑上(创建一个数据库都会生成两个文件,一个是数据文件,一个是记录日志啥的,log类型的是数据文件,mdf类型的是日志文件)
在这里插入图片描述

**

3.拷贝过来的文件给它权限

**
a先选择到文件然后右击,再点击属性,之后就会弹出一个如图二那样的模态框(刚弹出放入谁显示常规的内容的,我们要点击上方那个安全才是下图那样的界面)然后点击编辑;
在这里插入图片描述
图一

在这里插入图片描述
图二

b 点击编辑后会跳转到图三页面,我们这时点击添加,点击完添加就会跳到图四的界面,这是我们应该点击左下角的高级按钮;
在这里插入图片描述
图三

在这里插入图片描述
图四

c 点击高级按钮后会跳转到图五那样的界面,然后的话点击图中鼠标放置的那个按钮(立即查找),之后就会在下界面下方的搜查结果就会看到出来了很多名称,这时我们在那些名称当中找到 Everyone然后选中它再点击确定(如图六),等它跳到图七的界面就直接点击确定;
在这里插入图片描述
图五

在这里插入图片描述
图六

在这里插入图片描述
图七
d 跳到图八界面之后把完全控制的钩提上就会全部权限的钩子都会提上的(如图九),然后直接点击确定,之后就会跳转到图二的那个页面,不过不同的是在组和用户名里面多了一个Everyone(就如同下面的图一样组和用户名里有着四个数据)。
在这里插入图片描述
图八

在这里插入图片描述
图九

4.到数据库里附加数据

上面的步骤都弄完之后就到了最后一步了,我们直接到SQL Server(也就是数据库)里直接选中数据库然后右击附加数据就ok了

本期完

<think>嗯,用户让我以编程专家的身份回答问题,需要详尽解答,提供代码并解释,最后还要提出相关问题。首先,我需要确定用户的问题是什么。当前的问题是关于快速排序的Python实现,用户可能想了解快排的基本实现方法以及相关知识点。 好的,首先我得回忆一下快速排序的步骤。快排的核心是分治法,选择一个基准元素,然后将数组分成两部分,左边比基准小,右边比基准大,然后递归处理左右子数组。需要确保基准的选择正确,通常可以选择中间元素或者第一个元素,这里可能用中间更容易理解。 然后,我需要写出Python代码。代码的结构应该是定义一个quick_sort函数,参数是arr。如果数组长度小于等于1,直接返回。否则,选择中间元素作为基准,然后分成左、中、右三个列表,左列表是比基准小的元素,右是大的,中间是等于基准的。然后递归处理左和右,最后合并左、中、右。 在代码示例中,可能使用列表推导式来分割数组。比如,对于每个元素,如果小于基准就放到左列表,等于放到中间,大于放到右边。然后递归调用quick_sort处理左右部分,再合并返回。接下来是解释代码部分,需要说明函数的工作流程,基准的选择,以及如何分割数组。同时,要提到递归终止条件,时间复杂度平均是O(n log n),最坏是O(n²),比如当数组已经有序时,如果总选第一个元素作为基准的话。不过在这个实现中,基准选的是中间元素,可能减少最坏情况的概率,但严格来说,最坏情况还是存在的,除非使用随机化选择基准。 然后,用户可能想了解相关问题,比如快排的原理、时间复杂度、其他语言的实现,或者优化方法。所以在相关问题部分,需要列出这些点,比如快排的详细原理,时间复杂度,Java实现,如何优化快排等。现在检查代码是否正确。例如,测试用例arr = [3,6,8,10,1,2,1],排序后应该是[1,1,2,3,6,8,10]。代码中的基准是选中间元素,索引是len(arr)//2,所以对于长度7的数组,中间是第3个元素(索引3,值为10?原数组是[3,6,8,10,1,2,1]吗?这时候中间元素是索引3,即10?那分割的时候,左数组是所有比10小的元素,右数组是比10大的,但原数组中没有比10大的,所以左数组是[3,6,8,1,2,1],中间是[10],右数组为空。递归处理左数组,此时左数组长度6,中间索引是2,元素是8。分割左数组为比8小的元素,中间是8,右边更大的元素。这样递归下去,最终会正确排序吗?可能这个例子中的基准选择会导致递归深度较大,但最终应该能正确排序。不过这个例子可能不是最优的情况,但代码逻辑是对的。可能存在的问题是,当数组中有重复元素时,中间列表会包含所有等于基准的元素,这样递归处理时就不会再处理这些元素,避免了重复比较。所以代码应该能正确处理重复元素的情况。 总结,给出的代码是正确的,并且解释了各个部分的功能。相关问题的部分需要覆盖原理、复杂度、其他语言实现和优化方法,这样用户可以有进一步的学习方向。</think>快速排序是一种基于分治策略的高效排序算法,以下是用Python实现的快速排序代码: ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) # 示例用法 arr = [3,6,8,10,1,2,1] sorted_arr = quick_sort(arr) print(sorted_arr) # 输出 [1,1,2,3,6,8,10] ``` 代码解释: 1. `quick_sort`函数接收一个数组作为参数 2. 基线条件:当数组长度≤1时直接返回 3. 选择中间元素作为基准值(pivot) 4. 将数组分割为三个子数组: - left:所有小于基准值的元素 - middle:等于基准值的元素 - right:大于基准值的元素 5. 递归地对left和right进行快速排序,最终合并结果 时间复杂度: - 平均情况:O(n log n) - 最坏情况:O(n²)(当数组已经有序且总是选择极端值作为基准时) - 最佳情况:O(n log n)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值