【基础储备】Differential Privacy 基础知识储备之 privacy book

本文探讨了差分隐私的概念,包括privacy loss的定义、(ε-δ)-差分隐私的复合性质,以及Azuma不等式、斯特林公式等理论工具。详细介绍了Laplace机制、指数机制和高斯机制的bound,对比了Gaussian与Laplacian机制的优劣,并深入讨论了Composition theorems。参考文献为C.Dwork和A.Roth合著的《The algorithmic foundations of differential privacy》。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • privacy loss 的定义 : the privacy lossprivacy \, lossprivacyloss incurred by observing ξ\xiξ is



  • (ε-δ)-差分隐私的复合性质 :



  • 加性切诺夫界、乘性切诺夫界 :



  • Azuma不等式 :



  • 斯特林公式 :



  • Laplace机制的 bound :



  • utility function :
    utility function u:N∣X∣×R→R u : \mathbb N ^{\vert \mathcal X \vert } × \mathcal R \rightarrow \mathbb R\,u:NX×RR, which maps database/output pairs to utility scores.
    OPTu(x)=_u(x) =u(x)= maxr∈Ru(x,r)_{r \in \mathcal R} u(x, r)rRu(x,r) denote the maximum utility score of any element r∈Rr \in \mathcal RrR with respect to database xxx.


  • 指数机制的 bound :




  • 高斯机制 :

    更多详情见 The Gaussian Mechanism.pdf
    注:Gaussian Mechanism相较于Laplacian Mechanism有一个理论上的disadvantage,详见P53\mathcal P_{ \mathcal {53} }P53


  • Composition theorems :



  • 斯特林公式 :





Reference

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3{4):211{407, 2014.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值