-
privacy loss 的定义 : the privacy lossprivacy \, lossprivacyloss incurred by observing ξ\xiξ is
-
(ε-δ)-差分隐私的复合性质 :
-
加性切诺夫界、乘性切诺夫界 :
-
Azuma不等式 :
-
斯特林公式 :
-
Laplace机制的 bound :
-
utility function :
utility function u:N∣X∣×R→R u : \mathbb N ^{\vert \mathcal X \vert } × \mathcal R \rightarrow \mathbb R\,u:N∣X∣×R→R, which maps database/output pairs to utility scores.
OPTu(x)=_u(x) =u(x)= maxr∈Ru(x,r)_{r \in \mathcal R} u(x, r)r∈Ru(x,r) denote the maximum utility score of any element r∈Rr \in \mathcal Rr∈R with respect to database xxx.
-
指数机制的 bound :
-
高斯机制 :
更多详情见 The Gaussian Mechanism.pdf
注:Gaussian Mechanism相较于Laplacian Mechanism有一个理论上的disadvantage,详见P53\mathcal P_{ \mathcal {53} }P53
-
Composition theorems :
-
斯特林公式 :
Reference
C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3{4):211{407, 2014.