[论文笔记] Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation

原文链接:https://arxiv.org/abs/2007.09222

github:GitHub - JDAI-CV/FADA: (ECCV 2020) Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation


Motivation

1. 语义分割领域的数据标注通常难以获取。由于数据标注需要大量的时间人力,因此在训练时所使用的训练数据往往难以完美匹配测试时的要求。

作者提出了两种场景,分别为跨城市迁移和真实合成样本迁移。

  • 跨城市迁移:由于不同城市数据因为建筑风格等一系列差异,在用A城市数据训练出的模型,在B城市做测试时可能很难达到理想的效果。
  • 真实合成样本迁移:由于数据标注困难,因此有研究者提出使用计算机合成数据进行训练。如图下图左上角为GTA5游戏的图像。游戏图像是由计算机建模形成,因此很容易获取其标注数据,并且理论上游戏图像数据量是无限的。但同样将合成数据应用到现实真实数据中,效果通常不令人满意。

2. 对于大多数传统方法而言,特征对齐仅仅是在全局上的对齐(perform the alignment from a holistic view),无

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值