洛谷 P1757 通天之分组背包(分组背包)[C,C++]

题目及翻译

题面

自 01 背包问世之后,小 A 对此深感兴趣。一天,小 A 去远游,却发现他的背包不同于 01 背包,他的物品大致可分为 k 组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。

输入

两个数m,n,表示一共有n件物品,总重量为m。
接下来n行,每行3个数ai,bi,ci,表示物品的重量,利用价值,所属组数
1≤n,m≤1000

输出

一个数,最大的利用价值。

输入样例

45 3
10 10 1
10 5 1
50 400 2

输出样例

10

题目思路

1.显然是一题01背包,题目都说了(笑。之前没怎么做过分组背包,想到了先遍历分组,却没想到先遍历空间(平常01背包图个方便,先遍历物品写习惯了 ),偷偷瞟了眼题解,豁然顿悟。在01背包的基础上,只要先遍历空间再遍历物品,就可以做到每个分组的每个物品只用一遍。

注意事项

1.先遍历空间的情况下要注意下标判负
2.分组可以直接开数组,我比较喜欢用stl库罢了。

AC代码

C/C++(代码几乎没有变更)

用时41MS 内存628K 长度805B

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MAXN(1e3 + 10),MAXM(1e3 + 10),INF(0x3f3f3f3f3f3f3f3f),MOD(9973)
### 三级标题:分组背包问题概述 分组背包问题是动态规划中的一种变种问题,它要求在有限的容量下,从多个物品组中选择物品以最大化价值。每组物品中只能选择一个物品。解决这类问题通常需要使用二维动态规划数组来记录状态。 ### 三级标题:分组背包问题的动态规划实现 解决分组背包问题的基本思路是通过动态规划来实现。首先初始化一个二维数组`dp`,其中`dp[i][j]`表示从前`i`组中选择物品装入容量为`j`的背包所能得到的最大价值。对于每一组物品,需要遍历所有可能的背包容量,并且对于每一个物品,决定是否将其放入背包中。 下面是一个简化的分组背包问题的动态规划实现示例: ```cpp // 假设groups是物品的分组列表,每个分组包含若干物品的重量和价值 // T是背包的总容量 // n是物品的总数量 // 初始化dp数组 int dp[T+1] = {0}; // 遍历每个分组 for (auto group : groups) { // 对于分组中的每个物品,进行0/1背包处理 for (int j = T; j >= 0; j--) { for (auto item : group) { if (j >= item.weight) { dp[j] = max(dp[j], dp[j - item.weight] + item.value); } } } } ``` ### 三级标题:分组背包问题的优化 在实际应用中,为了节省空间,可以将二维数组优化为一维数组。这是因为每次更新`dp`数组时,只需要前一次的状态。因此,可以使用一维数组`dp`来进行状态转移,并且在处理每个分组时,需要逆序遍历背包的容量,以确保每组物品的选择不会相互干扰。 ### 三级标题:分组背包问题的应用 分组背包问题可以应用于多种场景,例如资源分配、投资组合优化等。在这些场景中,可能需要考虑每组至少选择一个物品、每组恰好选择一个物品或者混合类型的分组背包问题。这些问题可以通过调整动态规划的状态转移方程来解决。 ### 三级标题:分组背包问题的变种 分组背包问题的变种包括但不限于以下几种情况: - 每组至少选择一个物品。 - 每组恰好选择一个物品。 - 混合分组背包问题,其中包含不同类型的物品组,如0/1背包、至多1个的分组背包、至少1个的分组背包等。 - 结合数论的分组背包问题,这可能涉及到更复杂的数学计算。 ### 三级标题:分组背包问题的总结 分组背包问题是一个经典的动态规划问题,它要求在有限的条件下做出最优的选择。通过合理的设计状态转移方程,可以有效地解决这类问题。此外,分组背包问题还可以与其他数学概念相结合,形成更加复杂的问题模型。 ### 三级标题:分组背包相关题集整理 在实际的编程竞赛和算法练习中,分组背包问题经常出现。例如洛谷上的题目P1757通天分组背包”,就是一个典型的分组背包问题,可以通过上述的动态规划方法来解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值