
CV
文章平均质量分 74
图像处理技术
深海鱼肝油ya
在读盐焗生,北境第一深情,吉他爱好者。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
让你秒懂的ROI区域提取
代码里面说的比较明白import numpy as npimport cv2 as cvfrom matplotlib import pyplot as pltif __name__=='__main__': original = cv.imread('./test_img/line/line7.jpg') src=cv.imread('./test_img/line/line7.jpg',0) (h,w)=src.shape[:2] #print(src.s.原创 2021-04-29 22:26:38 · 7738 阅读 · 0 评论 -
毕业设计(基于气泡模态智能分析的啤酒内微小杂质检验技术研究)——思路四(Convolution)
今天和导师讨论了一下,开题报告又让打回了,呜呜呜难受啊!不过导师给了一种思路,是模板卷积,趁着热乎把他的方法思路记录下来,不愧是清华的博后,估计我和他讨论的时候,就像天才和愚者的对话吧(我宛若一个智障~~)导师的思路大致如下:做多个模板,一个模板是三层的,因为我们是根据气泡的特征来判断,气泡从外到内是白--》黑--》白,所以我们的模板的也需要这样来做,然后进行卷积,得到一个响应值,如果是气泡的话,那么卷完之后的响应值会很大,但是如果是均匀区域的话,卷积完了之后响应值就会趋近于0。原理:假原创 2021-03-24 11:37:34 · 529 阅读 · 0 评论 -
毕业设计(基于气泡模态智能分析的啤酒内微小杂质检验技术研究)——思路三(多目标模板匹配)
openCV自带的模板匹配函数只能匹配出一个地方,但是有多个,这就需要用到多目标模板匹配。原图:初步处理之后:可见效果还算不错,但是还是有部分气泡没有识别出来而且,将一个噪声点误识别为气泡了。示例代码如下:import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltif __name__=='__main__': path='./test_img/line/line7.jpg'原创 2021-03-18 11:30:40 · 320 阅读 · 1 评论 -
毕业设计(基于气泡模态智能分析的啤酒内微小杂质检验技术研究)——思路二(边缘检测+轮廓提取)
一.前言需求和图片材料过后会上传!共有四种思路:1.边缘检测+轮廓提取 2.区域生长算法 3.ROI模板匹配 4.直接调openCV的函数其实前些日子已经大致做了区域生长算法的实现,效果的话,瓶身部分的气泡基本可以识别出来,但是瓶肩处(有突起的字符)的气泡和接近瓶底处的气泡确不能识别出来,而且此算法随着初始种子的选取位置的改变,图像分割效果差别也很大!中间有一些其他的事,所以就将进度放下了。此方法待改进的点:1.种子点的自动选取 2.进行生长之前添加传统的图像处理今天开始做边缘检测方向的解决原创 2021-03-15 17:39:44 · 931 阅读 · 0 评论 -
毕业设计(基于气泡模态智能分析的啤酒内微小杂质检验技术研究)——思路一(区域生长算法+轮廓提取)
主要目标就是识别啤酒瓶中的气泡。其实这个思路是我做的三种方法中第一个做的,只不过当时还没用博客记录毕设过程,所以这篇写的最晚,现在来补上。定义啥的客套话我就不说了,自己搜搜区域生长算法的博客,跟着学习学习就好了,和迷宫的递归其实差不多,就像向周围几个方向深搜似的。待答辩完了我会将我的所有的代码都上传。原图:今天写论文的时候突然想到一个问题,就是采集的图片亮度局部不均匀的问题,有的地方偏暗,有地方亮,那么我是不是可以先将图片做归一化处理或者直方图均衡化来将亮度均衡一下呢!二话不说.原创 2021-03-18 15:10:39 · 969 阅读 · 0 评论 -
openCV对识别出的目标对象标号(putText函数)
示例代码:就像下面这段代码,直接利用cv.putText函数即可,注意数字需要转化成字符型!# 提取轮廓 # findContours函数会修改原始图像 cnts = cv.findContours(cannyImg.copy(), mode=cv.RETR_EXTERNAL, method=cv.CHAIN_APPROX_SIMPLE) # print(cnts) cnts = imutils.grab_contours(cnts) numCnts =原创 2021-03-16 12:52:39 · 3181 阅读 · 11 评论 -
图像边缘定义及一二阶导数的理解 & 梯度
一.定义图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常边缘划分为阶跃状和屋顶状两种类型。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。二.导数理解那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰原创 2021-03-13 16:11:47 · 6081 阅读 · 5 评论 -
openCV保存图片之后是一张黑色图片解决办法
保存是用的imwrite函数,我用dtype打印了一下保存前后的图片的数据类型,保存之前是float64,而保存之后则是uint8,打印图片一看像素点都是小数,所以是黑色图片。想要正常显示,只需要将图片类型用.astype转换回去就好了!参考这篇blog...原创 2021-03-03 20:19:43 · 3673 阅读 · 1 评论 -
gray morphology basic operation
目录一.概述二.灰度腐蚀三.灰度膨胀四.灰度图腐蚀与膨胀代码一.概述灰度形态学是二值形态学向灰度空间的自然扩展。 在灰度形态学中,分别用图像函数f(x,y)和b(x,y)表示二值形态学中的目标图像A和结构元素B,并把f(x,y)称为输入图像,b(x,y)称为结构元素,函数中的(x,y)表示图像中像素点的坐标。 二值形态学中用到的交和并运算在灰度形态学中分别用最大极值和最小极值运算代替。二.灰度腐蚀 灰度腐蚀运算的计算是逐点进行的,求某点的腐蚀运算结果就是...原创 2020-05-29 02:09:05 · 3002 阅读 · 3 评论 -
Morphological image processing
目录基本思想:一.集合论基础1.集合的概念2.集合间的关系和运算二.二值形态学的基本运算1.腐蚀(1)概念(2)结构元素形状对腐蚀运算结果的影响(3)腐蚀运算在物体识别中的应用2.膨胀(1)概念2.膨胀运算的基本过程(2)结构元素形状对膨胀运算结果的影响(3)膨胀运算的应用(4)腐蚀运算与膨胀运算的对偶性3.开运算与闭运算(1)开运算基本思想:数学形态学图像处理的基本思想是:用具有一定形态的结构元素(是指具有某种特定结构形状的基本元原创 2020-05-20 11:54:53 · 3986 阅读 · 2 评论 -
image features extraction
目录一.概述二.图像的边缘特征及其检测方法1.图像的边缘特征2.梯度边缘检测(1)原理(2)Roberts算子(3)Sobel算子(4)Prewitt算子3.二阶微分边缘检测一.概述图像领域的许多应用中,人们总是希望从分割出的区域中分辨出地物类别,例如分辨农田、森林、湖泊、沙滩等;或是希望从分割出的区域中识别出某种物体(目标),例如在河流中识别舰船;在飞机跑道上识别飞机等。进行地物分类和物体识别的第一步就是物体特征的提取和检测,然后才能根据检测和提取的图像特征..原创 2020-05-13 11:26:20 · 3655 阅读 · 0 评论 -
image segmentation
目录一.概述二.灰度阈值分割三.基于边界的图像分割未完学习视频一.概述图像分割的困难基本原理二.灰度阈值分割上面的f(x,y)是某点的像素,即灰度值如上图就人工根据直方图对阈值进行了确定(125)三.基于边界的图像分割...原创 2020-05-06 12:03:23 · 2296 阅读 · 0 评论 -
White Balance and Maximum Color Method
理论知识请移步这里import cv2 as cvimport numpy as npimport sysassert 'linux' in sys.platformimg = cv.imread('/home/image/Pictures/lena512color.jpg', 1)height = img.shape[0]width = img.shape[1]de...原创 2020-05-04 00:02:45 · 1925 阅读 · 0 评论 -
color image process
与灰度图像相比,彩色图像除含有较大的信息量外,它的表示方式和存储结构也不相同,因此,不能将灰度图像的处理技术简单地直接应用于彩色图像。与单色图像相比,多光谱图像含有丰富的光谱信息,对地物分析和识别有非常重要的作用。对于无彩色(消色)图像来说,亮度(也即灰度)是唯一的属性。对于有彩色图像来说,通常用亮度、色调及饱和度表示颜色的特性。亮度反映了该颜色的明亮程度。颜色中掺入的白色越多亮度就...原创 2020-04-29 12:25:07 · 3407 阅读 · 0 评论 -
图像噪声与被噪声污染图像的恢复
图像噪声去除/降低是图像处理技术中,图像增强与图像恢复的交叉研究问题,一般认为是一种图像预处理技术。 为了在有噪声的情况下恢复图像,就需要了解噪声的统计性质,以及噪声与图像之间的相关性质。图像噪声通常是一种空间上不相联系的离散和孤立的像素的变化现象。 图像噪声也是一种图像退化因素。 对信号/图像来说,噪声是一种外部干扰。但噪声本身也是一种信号(携带了噪声源的信息)。...原创 2020-04-23 10:48:04 · 5699 阅读 · 2 评论 -
图像恢复
图像恢复(复原)与图像增强的研究内容有一定的交叉性:图像增强1是一种改进图像视觉效果的技术(增益性);图像恢复2是一种对退化(或品质下降)了的图像去除退化因素,并进而复原或重建退化图像的技术。 根据以上定义,通过去模糊函数去除图像模糊应属于一种图像恢复技术。图像恢复是通过计算机处理,对质量下降的图像加以重建或恢复的处理过程。图象恢复指消除成像过程中因摄像机与物体相对运动、系统误差、...原创 2020-04-22 12:20:22 · 4125 阅读 · 0 评论 -
Frequency domain enhancement
学习地址对于那些在空间域中表述起来比较困难,甚至是不太可能实现的图像处理问题,可以先通过对图像进行离散傅里叶变换把图像变换到频率域,然后利用适当的频率域图像处理方式对图像进行处理,处理完后再把它转换回空间域中,从而解决那些在空间域不便于解决的图像处理问题。由傅里叶频谱的特性可知,u和v同时为0时的频率成分对应于图像的平均灰度级。当从(傅里叶)变换的原点离开时,低频对应着图像的慢变...原创 2020-04-08 12:49:44 · 2234 阅读 · 0 评论 -
Fourier transform
refer to this article,博主写的magnificent quite! certainly,could also read my own episode completely,this combines my study with the blog mentioned is prominent as well.前面曾经介绍过空间域滤波,空间域滤波就是用各种模板直接与图像进行卷...原创 2020-04-02 11:15:51 · 2744 阅读 · 0 评论 -
Laplace锐化算子和LOG算子
没弄懂这个LOG算子是咋写的,根据代码推出来的公式分母比PPT上多了,以后再说吧,现在没时间搞。。# -*- coding:utf-8import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimport mathpath ="/home/image/Pictures/lena300.jpg"...原创 2020-06-21 23:16:48 · 3007 阅读 · 0 评论 -
数字图像处理的数学基础
学习资源戳这里原创 2020-03-25 10:48:47 · 2595 阅读 · 4 评论 -
Airspace smoothing
加性噪声:可加性噪声,一般易于消除乘性噪声:非线性引入的噪声,往往与信号密切相关量化噪声:模拟信号转化到数字信号时取整变化产生的误差注意template左上角的1后面有个黑点,代表运算的结果后赋给这个对应点。一般噪声的像素与周围的像素都明显不同。...原创 2020-03-12 10:19:10 · 1870 阅读 · 0 评论 -
Histogram equalization
学习ppt所谓直方图均衡,就是把一已知灰度概率分布的图像,变换成具有均匀概率分布的新图像的过程 。r 为待增强的原图像的归一化灰度值, 0≤r≤1 ;s 为增强后的新图像的归一化灰度值,且0≤s≤1;n(r)为原图像中灰度值为r 的像素的个数,其概率分布密度为pr(r)。直方图均衡即是找一种变换,使具有任意概率分布密度的直方图的图像,变换成接近于均匀概率分布密度的直方图的图像。直方图...原创 2020-03-06 20:45:42 · 2078 阅读 · 0 评论 -
数字图像处理--图像增强
图像锐化学习地址图像增强就是通过对图像的某些特征,如边缘、轮廓、对比度等,进行强调或尖锐化,使之更适合于人眼的观察或机器的处理的一种技术。图像增强技术分为:空间域增强方法,也即在图像平面中对图像的像素灰度值直接进行运算处理的方法。频率域增强方法,是指在图像的频率域中对图像进行增强处理的方法。空间域图像增强方法逐像素点对图像进行增强的灰度变换方法;通过全部或局部地改变图像的对...原创 2020-03-04 11:36:02 · 7133 阅读 · 0 评论 -
Geometric Transformation(几何变换)
图像坐标系是笛卡尔坐标系顺时针旋转90度。如下:eg:(图为鱼眼镜头)几种几何变换:defination:变换只是坐标发生变换,像素值是不改变的,即像素点的移动。common geometric transformation:平移为方便运算,要按照笛卡尔坐标系来运算。用线代的矩阵运算表示。上图中的第二个图片可见将图像向右下角移动...原创 2020-02-27 10:03:55 · 4046 阅读 · 0 评论 -
Image Histogram
下面那个是p(rk)是概率密度函数。横坐标灰度等级,纵坐标是各个像素的个数。直方图性质:1.无空间信息2.直方图与图像一对多关系(不同的图像可能有相同的直方图。)3.可叠加性(全图与子图像),即图像可以由多个子图叠加而成归一化:因为目标函数是均匀的,所以P(s)=1,因为那个像素的个数是必定不为0的。(运算时四舍五入...原创 2020-02-26 12:10:00 · 3636 阅读 · 0 评论 -
数字图像处理第三章(数字图像的基本运算)
3.1灰度反转3.2对数变换3.3灰度直方图3.3.2归一化灰度图像直方图归一化即根据灰度值分布概率来评判3.3.3灰度直方图的特征3.4图像的代数运算图像的代数运算包括两幅图像的相加和相减运算3.4.2图像的相减运算...原创 2020-02-20 09:34:27 · 2306 阅读 · 2 评论 -
数字图像处理第二章(数字图像处理基础)
仅有单一波长成份的光称为单色光,含有两种以上波长成份的光称为复合光,单色光和复合光都是有色彩的光。没有色彩的光称为消色光。消色光就是观察者看到的黑白电视的光,所以消色指白色、黑色和各种深浅程度不同的灰色。消色光的属性仅有亮度或强度,通常用灰度级描述这种光的强度。大量实验表明,主观亮度(人的视觉系统感觉到的亮度)与进入人眼的光的强度成对数关系。对图像...原创 2020-02-19 11:21:45 · 3692 阅读 · 3 评论