2.1什么是知识表示
- 知识表示——用易于计算机处理的方式来描述人脑知识的方法
- 符号表示与向量表示
符号表示:主要缺点是不易于刻画隐式的知识,同时因为推理依赖于知识描述的精确性,比如一个字符串表示稍有错误就无法完成推理,因而传统的符号人工智能研究的很多推理机都没有得到大规模的实用;
向量表示:好处是易于捕获隐式的知识,还可以将推理过程转化为向量、矩阵或张量之间的计算。缺点是丢失了符号表示的可解释性
2.2人工智能历史发展长河中的知识表示
- 描述逻辑——一阶谓词逻辑的可判定子集,主要用于描述本体概念和属性,对于本体知识库的构建提供了便捷的表达形式。核心要素包括:概念(Concepts)、关系(Relations)、个体(Individuals)。一个由描述逻辑实现的知识库通常包括两个部分。即:TBox和ABox,TBox包含内涵知识,用于描述概念的一般性质。ABox包含外延知识,描述领域中的特定个体。
- 霍恩规则逻辑——也是一阶谓词逻辑的子集,主要特点是表达形式简单、复杂度低,易于描述规则性知识(如Prolog),核心表达要素:原子(Atom)、规则(Rules)、事实(Facts)。
这类以谓词逻辑为基础的知识表达方式的主要优点是接近自然语言,易于表示精确知识,易于精确实现,主要缺点是无法表达不确定性知识。
- 产生式系统——专家系统多数是基于产生式系统,核心表达式是 IF P THEN Q CF = [0,1],其中P是产生式的前提,Q是一组结论或操作