学习笔记——《知识图谱导论》陈华钧第二章·知识图谱的表示

本文详细介绍了知识图谱的表示方法,包括符号表示(如属性图、RDF图模型和OWL本体语言)和向量表示(如词向量和实体向量)。讨论了各种表示的优缺点,如属性图灵活性高但缺乏标准,而RDF支持推理。此外,还提及了知识表示的历史,如描述逻辑、霍恩规则逻辑和产生式系统等,强调了知识获取的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1什么是知识表示

  1. 知识表示——用易于计算机处理的方式来描述人脑知识的方法
  2. 符号表示与向量表示
    符号表示:主要缺点是不易于刻画隐式的知识,同时因为推理依赖于知识描述的精确性,比如一个字符串表示稍有错误就无法完成推理,因而传统的符号人工智能研究的很多推理机都没有得到大规模的实用;

    向量表示:好处是易于捕获隐式的知识,还可以将推理过程转化为向量、矩阵或张量之间的计算。缺点是丢失了符号表示的可解释性

2.2人工智能历史发展长河中的知识表示

  1. 描述逻辑——一阶谓词逻辑的可判定子集,主要用于描述本体概念和属性,对于本体知识库的构建提供了便捷的表达形式。核心要素包括:概念(Concepts)、关系(Relations)、个体(Individuals)。一个由描述逻辑实现的知识库通常包括两个部分。即:TBox和ABox,TBox包含内涵知识,用于描述概念的一般性质。ABox包含外延知识,描述领域中的特定个体
  2. 霍恩规则逻辑——也是一阶谓词逻辑的子集,主要特点是表达形式简单、复杂度低,易于描述规则性知识(如Prolog),核心表达要素:原子(Atom)、规则(Rules)、事实(Facts)

这类以谓词逻辑为基础的知识表达方式的主要优点接近自然语言,易于表示精确知识,易于精确实现,主要缺点无法表达不确定性知识

  1. 产生式系统——专家系统多数是基于产生式系统,核心表达式是  IF P THEN Q CF = [0,1],其中P是产生式的前提,Q是一组结论或操作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值