Pandas的常见基本使用方法操作

Pandas是基于NumPy的Python数据分析工具,提供高级数据结构和数据操作功能,适用于数据挖掘和分析。本文介绍Pandas的基本概念,包括Series和DataFrame的创建与操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是Pandas?

Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis)。

Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。

  • 一个强大的分析和操作大型结构化数据集所需的工具集

  • 基础是NumPy,提供了高性能矩阵的运算

  • 提供了大量能够快速便捷地处理数据的函数和方法

  • 应用于数据挖掘,数据分析

  • 提供数据清洗功能

  • Series和DataFrame中的索引都是Index对象,索引对象不可变,保证了数据的安全

  • Index对象种类Index,索引;Int64Index,整数索引;MultiIndex,层级索引;DatetimeIndex,时间戳类型

Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame

import pandas as pd             # 导包

Duang!!!!》》》》请参考: Pandas的常用操作大全 https://blog.csdn.net/weixin_44695969/article/details/97039159

Series

Series是一种类似于一维数组的 对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。

  • 类似一维数组的对象
  • 由数据和索引组成
    • 索引(index)在左,数据(values)在右
    • 索引是自动创建的

1. Series的创建

操作 代码实现 返回值 说明

通过list构建Series

pd.Series(range(10)) 新Series 自动生成索引
pd.Series(range(3), index = ['a', 'b', 'c']) 新Series 自定义索引

通过dict构建Series

pd.Series(dict) 新Series dict的key为索引,value为元素

2. Series的相关操作

操作
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值