深层神经网络与优化算法

1 为什么使用深层网络

对于人脸识别等应用,神经网络的第一层从原始图片中提取人脸的轮廓和边缘,每个神经元学习到不同边缘的信息;网络的第二层将第一层学得的边缘信息组合起来,形成人脸的一些局部的特征,例如眼睛、嘴巴等;后面的几层逐步将上一层的特征组合起来,形成人脸的模样。随着神经网络层数的增加,特征也从原来的边缘逐步扩展为人脸的整体,由整体到局部,由简单到复杂。层数越多,那么模型学习的效果也就越精确。
随着神经网络的深度加深,模型能学习到更加复杂的问题,功能也更加强大。

2 四层网络的前向传播与反向传播

在这里插入图片描述
在这里首先对每层的符号进行一个确定,我们设置L为第几层,n为每一层的个数,L=[L1, L2, L3, L4]n=[5, 5, 3, 1]

2.1 前向传播

首先还是以单个样本来进行表示,每层经过线性计算和激活函数两步计算
z [ 1 ] = W [ 1 ] x + b [ 1 ] , a [ 1 ] = g [ 1 ] ( z [ 1 ] ) , 输 入 x , 输 出 a [ 1 ] z^{[1]} = W^{[1]}x+b^{[1]},a^{[1]}=g^{[1]}(z^{[1]}),输入x,输出a^{[1]} z[1]=W[1]x+b[1]a[1]=g[1](z[1])xa[1] z [ 2 ] = W [ 2 ] a [ 1 ] + b [ 2 ] , a [ 2 ] = g [ 2 ] ( z [ 2 ] ) , 输 入 a [ 1 ] , 输 出 a [ 2 ] z^{[2]} = W^{[2]}a^{[1]}+b^{[2]},a^{[2]}=g^{[2]}(z^{[2]}),输入a^{[1]},输出a^{[2]} z[2]=W[2]a[1]+b[2]a[2]=g[2](z[2])a[1]a[2] z [ 3 ] = W [ 3 ] a [ 2 ] + b [ 3 ] , a [ 3 ] = g [ 3 ] ( z [ 3 ] ) , 输 入 a [ 2 ] , 输 出 a [ 3 ] z^{[3]} = W^{[3]}a^{[2]}+b^{[3]},a^{[3]}=g^{[3]}(z^{[3]}),输入a^{[2]},输出a^{[3]} z[3]=W[3]a[2]+b[3]a[3]=g[3](z[3])a[2]a[3] z [ 4 ] = W [ 4 ] a [ 3 ] + b [ 4 ] , a [ 4 ] = σ ( z [ 4 ] ) , 输 入 a [ 3 ] , 输 出 a [ 4 ] z^{[4]} = W^{[4]}a^{[3]}+b^{[4]},a^{[4]}=\sigma(z^{[4]}),输入a^{[3]},输出a^{[4]} z[4]=W[4]a[3]+b[4]a[4]=σ(z[4])a[3]a[4]
我们将上式简单的用通用公式表达出来,x = a[0]
z [ L ] = W [ L ] a [ L − 1 ] + b [ L ] , a [ L ] = g [ L ] ( z [ L ] ) , 输 入 a [ L − 1 ] , 输 出 a [ L ] z^{[L]} = W^{[L]}a^{[L-1]}+b^{[L]},a^{[L]}=g^{[L]}(z^{[L]}),输入a^{[L-1]},输出a^{[L]} z[L]=W[L]a[L1]+b[L]a[L]=g[L](z[L])a[L1]a[L]
那么m个样本的向量表示:
Z [ L ] = W [ L ] A [ L − 1 ] + b [ L ] , A [ L ] = g [ L ] ( Z [ L ] ) , 输 入 A [ L − 1 ] , 输 出 A [ L ] Z^{[L]} = W^{[L]}A^{[L-1]}+b^{[L]},A^{[L]}=g^{[L]}(Z^{[L]}),输入A^{[L-1]},输出A^{[L]} Z[L]=W[L]A[L1]+b[L]A[L]=g[L](Z[L])A[L1]A[L]

2.2 反向传播

因为涉及到的层数较多,所以我们通过一个图来表示反向的过程
在这里插入图片描述

  • 反向传播的结果
    单个样本的反向传播:
    d Z [ l ] = d J d a [ l ] d a [ l ] d Z [ l ] = d a [ l ] ∗ g [ l ] ′ ( Z [ l ] ) dZ^{[l]}=\frac{dJ}{da^{[l]}}\frac{da^{[l]}}{dZ^{[l]}}=da^{[l]}*g^{[l]}{'}(Z^{[l]}) dZ[l]=da[l]dJd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值