根据某一列或某几列进行降序/升序排序,返回前n行或者后n行

本文介绍了如何使用Pandas的nlargest和nsmallest函数,根据指定列进行降序或升序排序,并选择前n行。详细解释了参数n、columns和keep的用法,并通过示例展示了如何处理重复值的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nlargest(n,columns,keep='first')  #降序排序
nsmallest(n,columns,keep='first')  #升序排序
n:int类型,表示要返回的行数
columns:需要排序的列,如先根据A列进行排序,在根据B列进行排序--->['A','B']
keep:默认keep='first',当有重复值时,返回第一次出现的行;
                   keep='last',当有重复值时,返回最后一次出现的行;
                   keep='all',当有重复值时,返回所有的行(可能导致返回的结果大于n行);
df=pd.DataFrame({'name':['A','B','C','D','F'],
                 'score1':[90,100,86,86,70],
                 'score2':[88,98,90,100,90],
                 'sex':['男','男','女','男','女']})
print(df)

>>>

  name  score1  score2 sex
0    A      90      88   男
1    B     100      98   男
2    C      86      90   女
3    D      86     100   男
4    F      70      90   女

举例一:筛选出score1最高的前3名(注:包含重复值)
df_filt=df.nlargest(3,'score1',keep='first') 
print(df_filt)
>>>
  name  score1  score2 sex
1    B     100      98   男
0    A      90      88   男
2    C      86      90   女

df_filt=df.nlargest(3,'score1',keep='all')
print(df_filt)

>>>

  name  score1  score2 sex
1    B     100      98   男
0    A      90      88   男
2    C      86      90   女
3    D      86     100   男

举例二:筛选出score1最高的前3名,如果重复再按照score2进行排序(注:都重复也返回)

df_filt=df.nlargest(3,['score1','score2'],keep='all')
print(df_filt)

>>>

  name  score1  score2 sex
1    B     100      98   男
0    A      90      88   男
3    D      86     100   男

                                                 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值