修改列名
df.rename(columns, axis=‘columns’)
修改行名
df.rename(columns, axis=‘index’)
设置索引列
df.set_index(“Id”)
合并数据
pd.concat([df1,df2],axis=1, join=‘inner’)
筛选数据
df[df[“Id”]!=0]
数据的统计特征描述
df.describe()
删除列
df.drop(columns, axis=1)
Nan值数据的填充
df.amountResult.fillna(0)
数据读取
pd.read_csv(‘test.csv’,sep=’\t’,header=None)
数据存储
df.to_csv(“result.csv”)
apply的使用
df[i].apply(lambda x: format(x, ‘.2%’))
行索引
df.iloc[2]
df.iloc[[0,1,2,5,6]]
列索引
df[“column”]
#Drop live projects
ks = ks.query(‘state != “live”’)
#Add outcome column, “successful” == 1, others are 0
ks = ks.assign(outcome=(ks[‘state’] == ‘successful’).astype(int))
#LabelEncoder
from sklearn.preprocessing import LabelEncoder
cat_features = [‘category’, ‘currency’, ‘country’]
encoder = LabelEncoder()
#Apply the label encoder to each column
encoded = ks[cat_features].apply(encoder.fit_transform)
#parse_dates
click_data = pd.read_csv(’…/input/feature-engineering-data/train_sample.csv’,
parse_dates=[‘click_time’])
【Python学习】pandas相关操作(持续更新中)
最新推荐文章于 2024-08-17 21:01:45 发布