动态规划DP典型问题训练(cpp代码)
概述
基本思想
动态规划算法通常用于求解具有某种最优性质的问题。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
典型例题
1.求解两个字符串的最大公共子序列LCS问题
2.最大子段和
3.最长上升子序列
4.最长回文串
https://blog.csdn.net/weixin_40170902/article/details/80585218(最大子段和参考链接)
https://blog.csdn.net/weixin_40673608/article/details/84262695(LCS问题参考链接)
LCS最长公共子序列
对于两个字符串s1,s2,字符串s1的前i个字符构成的字串和字符串s2前j个字符构成的字符子串的最大公共字串长度可以由i-1和j-1的情况归纳得到。把c数组想象为一个记录子串中最长公共子序列的表格,这便给了我们打表的条件,每一个右下角的格子,都可以由其左上方(或左边或上边)的格子中继承得到。最终时间复杂度为O(nm)。
class searchlcs
{
public: int c[10][10];
public:
int dosearchlcs(string s1, string s2) {
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
c[i][j] = 0;
}
}
const int s1_length = s1.size();
const int s2_length = s2.size();
/* for (int i = 0; i < s1_length; i++) {
c[i][0] = 0;
}
for (int j = 0; j < s2_length; j++) {
c[0][j] = 0;
}*/
for (int i = 1; i < s1_length+1; i++) {
for (int j = 1; j < s2_length+1; j