ccf线性分类器

这篇博客详细介绍了如何使用C++代码实现CCF线性分类器,通过判断数据点在线上的位置来确定分类结果,涉及数组操作和逻辑判断。核心是通过对比同一数据点在不同线上的表现,快速决定线性分类的决策边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ccf线性分类器

代码:

#include
#include

using namespace std;
vector v(20,1);

int main()
{
int number,memo;
int i,j,flag1=0,flag2=0,flag3=0,flag4=0;
cin>>number>>memo;
int anum[number],bnum[number];
int out[memo]; //0 no 1 yes
int cnum[memo],dnum[memo],fnum[memo];
char alee[number];
for(i=0;i<number;i++)
{
cin>>anum[i]>>bnum[i]>>alee[i];
}

for(i=0;i<memo;i++)
{
	cin>>cnum[i]>>dnum[i]>>fnum[i];
	
} 


for(j=0;j<memo;j++)
{
	flag1=0;
	flag2=0;
	flag3=0;
	flag4=0;

for(i=0;i<number;i++)
{
	if(alee[i]=='A')
	{
		
		//cout<<j<<"--A-- " << cnum[j]+dnum[j]*anum[i]+fnum[j]*bnum[i]<<endl;
		if( (cnum[j]+dnum[j]*anum[i]+fnum[j]*bnum[i]  ) >0)
		{
			flag1=1;
			
		} 
		else
		{
			flag2=1;
		}
		if(flag2==flag1&&flag1==1)
		{
			out[j]=0;
			flag1=0;
			flag2=0;
			break;
		}
		
	} 
	
	if(alee[i]=='B')
	{
		
		//cout<<j<<"--B-- " <<cnum[j]+dnum[j]*anum[i]+fnum[j]*bnum[i]<<endl;
		if(  (cnum[j]+dnum[j]*anum[i]+fnum[j]*bnum[i] )  <0)
		{
			flag3=1;
		}
		else
		{
			flag4=1;
		}
		
		if(flag3==flag4&&flag4==1)
		{
			out[j]=0;
			flag3=0;
			flag4=0;
			//cout<<"kaka";
			break;
		}
		
	}		
	
	
	
	
}

	if( (flag1==flag3&&flag1==1) ||(flag2==flag4&&flag2==1)   )
	{
		out[j]=1;
		//cout<<"zoule";
	}





}


for(i=0;i<memo;i++)
{

	if(out[i]==1)
	{
		cout<<"Yes"<<endl;
	}
	else
	{
		
		cout<<"No"<<endl;
	}
	

	
}





return 0;

}

ccf第一题,笨办法,直接根据数据开对应的数组,核心:判断同样的点在线上还是线下,若出现一个在上,一个在下,直接跳出循环(注意把flag置为0),否定该线段,如果最后点都在一侧,则比较两种点是不是不在一边,是的话就yes。
(注意flag变化)

### CCF CSP 考试中的线性分类器实现 尽管在提供的引用中并未提及具体的线性分类器相关内容,但从机器学习的角度来看,可以推测 CCSP 可能会涉及基本的算法设计与实现。以下是关于如何在线性代数和编程框架下实现简单线性分类器的方法。 #### 线性分类器简介 线性分类器是一种基于超平面划分数据集的模型,其目标是最小化错误率或将两类样本分开。常见的线性分类器有感知机 (Perceptron),支持向量机 (SVM) 的线性版本以及逻辑回归 (Logistic Regression)[^4]。 #### 感知机实现 感知机是一个简单的二分类模型,通过不断调整权重来最小化误分类点的数量。其实现如下: ```python import numpy as np class Perceptron: def __init__(self, learning_rate=0.1, max_epochs=100): self.learning_rate = learning_rate self.max_epochs = max_epochs def fit(self, X, y): n_samples, n_features = X.shape self.weights = np.zeros(n_features) self.bias = 0 for _ in range(self.max_epochs): for idx, x_i in enumerate(X): linear_output = np.dot(x_i, self.weights) + self.bias predicted_class = np.where(linear_output >= 0, 1, -1) update = self.learning_rate * (y[idx] - predicted_class) self.weights += update * x_i self.bias += update def predict(self, X): linear_output = np.dot(X, self.weights) + self.bias return np.where(linear_output >= 0, 1, -1) ``` 上述代码实现了感知机的核心功能,其中 `fit` 方法用于训练模型,而 `predict` 则负责预测新数据所属类别[^5]。 #### 支持向量机(SVM)的简化版 对于更复杂的场景,可以通过优化方法求解 SVM 的对偶问题。然而,在竞赛环境中通常不需要完整的库依赖,而是关注核心思想的应用。例如,利用梯度下降法近似解决软间隔 SVM: ```python def svm_loss(w, b, X, y, C): loss = 0 dw = np.zeros_like(w) m = len(y) scores = y * (np.dot(X, w) + b) data_loss = np.maximum(0, 1 - scores) loss += np.sum(data_loss) / m reg_loss = 0.5 * np.linalg.norm(w)**2 total_loss = loss + C * reg_loss dscores = -(scores < 1).astype(float) * y / m dw += np.dot(dscores.T, X) db = np.sum(dscores) return total_loss, dw, db ``` 此函数计算损失并返回梯度更新方向[^6]。 --- ####
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值