谁都能学会的SVM(支持向量机)分类器(一)超平面篇
谁都能学会的SVM(支持向量机)分类器(一)超平面篇
机器学习领域问题实现模式一般为特征+分类器,SVM分类器在机器学习分类器领域地位举足轻重。
SVM擅长解决什么类型的问题呢?
1.小样本
2.非线性(松弛变量、核函数为SVM精髓)
3.高维模式识别(例如文本分类)
从感知机开始,引入超平面的概念
n 维空间中的超平面由下面的方程确定:
wTx+b=0
w^Tx+b=0
wTx+b=0其中,w和x都是n维列向量,x 为平面上的点,w 为平面上的法向量,决定了超平面的方向,b 是一个实数,代表超平面到原点的
原创
2020-11-08 14:10:03 ·
4039 阅读 ·
8 评论