
数学
文章平均质量分 92
Psycho_MrZhang
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
高等数学基础(内积与正交)
内积与正交主要求的是向量的距离和夹脚等内容。原创 2025-06-16 13:07:57 · 264 阅读 · 0 评论 -
高等数学基础(矩阵基本操作转置和逆矩阵)
为同型矩阵且对应位置的各个元素相同, 则称矩阵。只有同型矩阵才可以做加减法运算, 比如。在Numpy中, 可以根据。原创 2025-06-04 15:51:26 · 1221 阅读 · 0 评论 -
高等数学基础(向量矩阵及其创建和特殊的矩阵)
将nnn个有序的数排成一排称为nnn维向量, 将nnn个有次序的数排成一列, 称为nnn维列向量如, 称为四维列向量x3456x = \left[\right]x3456称为四维行向量x3456x = \left[3 \\4 \\5 \\6\right]x3456如果没有声明一般为列向量。原创 2025-05-28 19:48:24 · 900 阅读 · 0 评论 -
高等数学基础(拉格朗日乘子法)
求解优化问题, 拉格朗日乘子法是常用的方法之一。原创 2025-05-27 16:08:50 · 718 阅读 · 0 评论 -
高等数学基础(泰勒公式)
为了方便研究, 一些复杂的函数可以用简单的函数近似表达。原创 2025-05-21 16:49:47 · 951 阅读 · 0 评论 -
高等数学基础(牛顿/莱布尼茨公式)
入参func: 积分函数a: 积分下限b: 积分上限出参积分值误差。原创 2025-05-20 15:23:53 · 1122 阅读 · 0 评论 -
高等数学基础(微积分的基本思想和解释)
微分是对函数局部变化率的线性描述, 微分学的基本思想就是。, 围成的平面图形, 我们可以通过。分为4份, 整体等于部分之和,移动时, 纵坐标上的变化范围为。,继续细分入图二表示, 间隔为。点的一个切线来近似代替函数。的思想, 分成许多个小矩形。. 根据无穷小的概念,, 假设函数上有一点。点切线的斜率是导数,如何求解曲面梯形的面积。上非负, 连续. 直线。原创 2025-05-16 16:47:08 · 852 阅读 · 0 评论 -
高等数学基础(梯度下降法求函数的最小值)
梯度下降法, 一般是寻找函数极小值最常用的优化方法. 当目标函数时凸函数时, 梯度下降时全局解, 但是一般情况没办法保证是全局最优的. 通常在求最优解时, 首先会设定好步长大小进行调整, 按照上述方法对参数进行调整后就会逼近一个极小值。为一元连续函数, 初始值为。, 那么下一个点的坐标就为。的梯度, 反复迭代, 直到。的绝对差极小, 此时。原创 2025-05-15 16:44:25 · 851 阅读 · 0 评论 -
多元函数求切面方程
类型公式表达偏导数∂f∂xi∂xi∂f梯度向量∇f∂f∂x1∂f∂xn∇f∂x1∂f∂xn∂f方向导数Duf∇f⋅uDuf∇f⋅u切平面方程zfx0∇fx0⋅x−x0zfx0∇fx0⋅x−x0。原创 2025-05-13 10:51:32 · 1007 阅读 · 0 评论 -
熵和交叉熵
交叉熵(Cross-Entropy)则是熵的延伸,直接用于评估模型预测分布与真实数据分布之间的差距,是分类任务中最常用的优化目标之一。将熵与交叉熵的公式分解为可理解的部分,通过逻辑分步和生活化类比,帮助读者掌握其数学本质与实际意义。通过具体机器学习任务,说明熵与交叉熵在模型训练和优化中的实际作用,并展示其解决实际问题的流程。明确熵与交叉熵的数学定义,通过通俗类比解释其核心思想,并说明其在机器学习中的直观意义。让读者理解熵和交叉熵在信息论与机器学习中的核心地位,并掌握其在模型优化中的实际意义。原创 2025-05-09 13:21:55 · 794 阅读 · 0 评论 -
数据归一化
在特征空间中,未归一化的数据可能导致坐标轴“拉伸”(如X轴范围0-1000,Y轴0-1),使距离计算(如欧氏距离)被大尺度特征主导。若特征尺度差异大(如“年龄”范围0-100 vs. “收入”范围0-100,000),大尺度特征会主导距离计算,导致模型失效。数据归一化(Data Normalization)是将不同量纲或尺度的特征值映射到统一数值范围(如[0,1])或分布(如均值为0、方差为1)的预处理技术。:假设特征服从正态分布(均值 μ=50,σ=15),标准化后 μ=0,σ=1。原创 2025-05-09 10:48:18 · 800 阅读 · 0 评论 -
贝叶斯定理
贝叶斯定理(Bayes’ Theorem)由18世纪英国数学家托马斯·贝叶斯(Thomas Bayes)提出,后经拉普拉斯等人完善,是概率论中的核心工具之一。它解决了如何基于新证据动态修正概率估计的问题,为从经典统计学向贝叶斯统计学的范式转变奠定了基础。在机器学习中,贝叶斯方法被广泛应用于分类、推荐系统、概率图模型等领域,例如垃圾邮件过滤(通过关键词出现的概率推断邮件是否为垃圾邮件)、医学诊断(根据检测结果更新患病概率)等。假设你设计了一个垃圾邮件过滤器,已知以下数据:问题:当某封邮件包含“免费”时,它是垃原创 2025-05-08 18:15:42 · 2535 阅读 · 0 评论 -
正态分布和幂律分布
正态分布幂律分布共同铺垫:通过对比身高(正态)与财富(幂律)的差异,引出两种分布对现实建模的本质区别——前者强调均值代表性,后者强调极端值主导性,为后续数学性质和算法设计埋下伏笔。正式定义:若随机变量XXX的概率密度函数为f(x)=12πσe−(x−μ)22σ2(−∞<x<∞),f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (-\infty < x < \infty),f(x)=2πσ1e−2原创 2025-05-08 17:15:28 · 1203 阅读 · 0 评论 -
矩阵基本操作/过拟合和损失函数
模型在训练数据上表现很好,但在测试数据上表现差的现象。原因是模型过度学习了训练数据的噪声或局部特征,导致泛化能力差。衡量模型预测值与真实值之间差异的函数。优化目标是使损失函数最小化。两个长度相同的向量对应元素相乘后求和的结果。(单价为10元和20元的商品),购买数量向量。将矩阵的行和列互换的操作,记作。原创 2025-05-08 14:57:31 · 656 阅读 · 0 评论 -
正则化和L1/L2范式
假设你正在设计一个房价预测模型,手头有100个特征(如面积、楼层、周边设施等),但其中部分特征可能是噪声或冗余(如“距离某个路灯的距离”)。在生物医学研究中,基因表达数据通常包含数万个基因(特征)的表达值,但样本量(如患者数量)往往仅有几十到几百个。在房价预测中,特征如“房间数”和“建筑面积”可能存在高度相关性(共线性),导致线性回归系数不稳定,甚至符号异常(如房间数增加但房价下降)。L2范式像“雨露均沾”的压缩策略——对所有权重施加与数值大小相关的惩罚,权重越大被压缩得越狠,但永远不会完全归零。原创 2025-05-08 13:54:34 · 1320 阅读 · 0 评论 -
BP算法正向传播和反向传播
定义:通俗解释:类似工厂流水线,原材料(输入)经过多道工序(网络层)逐步加工(加权与激活),最终产出成品(预测结果)。每一步的加工参数(权重)决定了成品质量。例子:输入一张猫的图片(像素值),正向传播逐层提取边缘→轮廓→特征→最终判断为“猫”。定义:通俗解释:假设团队完成任务后发现结果错误,需回溯分析每一步操作对错误的“贡献度”,并针对性改进。类比:烹饪失败时,从成品味道反推食谱问题:盐多→减少盐量;火候过久→调整时间。每一环节的修正依赖最终结果反馈。定义:BP算法是正向传播计算输出 + 反向传播原创 2025-05-08 13:21:39 · 917 阅读 · 0 评论 -
标量/向量/矩阵/张量/范数详解及其在机器学习中的应用
标量是单个数字,仅具有大小(Magnitude),没有方向。原创 2025-05-07 15:15:24 · 1078 阅读 · 0 评论 -
常见函数的图形表示
【代码】常见函数的图形表示。原创 2025-05-07 13:29:32 · 237 阅读 · 0 评论 -
拉格朗日和泰勒公式
拉格朗日乘数法与泰勒公式是数学与机器学习的基石工具,前者为约束优化提供解析路径,后者为复杂函数建模奠定基础。该问题本质上是一个带约束的优化问题,需在保证分类正确的前提下,最小化分类超平面的范数。假设你是一家工厂的管理者,需在固定预算下最大化生产利润(目标函数),但受限于原材料成本(约束条件)。在优化损失函数(如神经网络的损失函数)时,牛顿法通过二阶泰勒展开逼近函数极值,利用Hessian矩阵加速收敛。:地图上等高线代表海拔(目标函数),河流边界(约束条件)若与某条等高线相切,则该点可能是最高/最低点。原创 2025-05-07 13:17:31 · 927 阅读 · 0 评论 -
定积分和不定积分
积分学起源于17世纪对面积、体积及运动规律的研究,由牛顿(Newton)和莱布尼茨(Leibniz)独立发展形成体系。它与微分共同构成微积分的核心,解决了“如何求变化率的反过程”和“如何计算不规则形状的累积量”两大问题。在数学中,积分是分析连续变化的基础工具;在机器学习中,它支撑了概率分布建模、损失函数优化等关键环节。这两个问题看似不同,却通过微积分基本定理紧密关联:定积分的结果(面积)可通过不定积分的原函数计算,从而将“求和”转化为“找原函数”。学完本节后,你将能够:例子:例子:定义公式:∫abf(x)原创 2025-05-07 11:39:52 · 1087 阅读 · 0 评论 -
偏导数和梯度
在现代机器学习中,它们是优化算法的基石,尤其在神经网络训练中,通过反向传播算法高效计算损失函数的梯度,从而调整模型参数。例如,盲人摸象时,梯度会告诉他脚下哪边最陡峭。偏导数的核心思想是“固定其他变量,仅研究单一变量对函数值的影响”,但其表达形式可能因场景不同而有所变化。通过以上代码,读者可以直观理解偏导数和梯度的计算方法,并掌握其在优化问题中的实际应用。例如,在山丘地形图中,梯度指向最陡峭的上坡方向,负梯度指向最陡峭的下坡方向。通过这种拆解,读者能清晰理解:偏导数是梯度的“基石”,梯度是优化的“指南针”。原创 2025-05-07 11:11:19 · 1636 阅读 · 0 评论