TIMIT数据集预处理(使用python)

本文介绍了在复现深度学习论文过程中,由于wjs0数据集收费,选择使用TIMIT数据集作为替代。在处理TIMIT数据集时,面临将SPH格式文件转换为WAV格式的问题。作者分享了一个简洁的Python解决方案,以便于其他人参考和记录。

语音分离

TIMIT数据集

在复现论文的时候发现wjs0数据集收费,因为组内没有这个数据集,所以用TIMIT数据集替代,在使用TIMIT数据集时遇到一个需要将原有数据集中SPH格式(原来数据集的.WAV格式并非真正的wav格式,而是sph格式)的文件转化为WAV格式。搜索了一大圈的解决方法,虽然自己已经解决,但是在国外论坛中发现一个比较简洁的解决方式,遂将其贴出来,记录一下。

代码

import params as hp
from sphfile import SPHFile
import glob
import os
 
if __name__ == "__main__":
    path = 'D:/pycharm_proj/corpus/data/lisa/data/timit/raw/TIMIT/TRAIN/*/*/*.WAV'
    sph_files = glob
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值