【pytorch】torch1.7.1安装、查看torch版本、GPU是否可用

在conda 虚拟环境下安装torch==1.7.1+GPU版本

本机环境

  • CUDA 11.0
  • Python 3.7

安装torch1.7.1

官网搜索确认需要下载的对应本机cuda的torch版本,使用在线下载即可,会直接安装好torch、torhvision、torchaudio。
1、官网搜索对应cuda的版本
在这里插入图片描述

2、安装命令

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

查看安装版本

安装 PyTorch 1.7.1 GPU 版本的过程相对直接,但需要确保你的环境已经满足一些先决条件。以下是详细的步骤: ### 准备工作 1. **检查硬件支持** 确保你的计算机配备了 NVIDIA 显卡,并且该显卡支持 CUDA 计算。 2. **安装驱动程序** 更新到最新的 NVIDIA 驱动程序,这是运行 CUDA 的基础。你可以通过访问 [NVIDIA 官方网站](https://www.nvidia.com/Download/index.aspx) 来下载适合你显卡的最新驱动。 3. **CUDA 和 cuDNN** 虽然可以直接安装包含所有依赖项的 Anaconda 包,但在某些情况下,手动安装 CUDA Toolkit 和 cuDNN 可能会更稳定。PyTorch 1.7.1 支持 CUDA 10.2 或者更高版本以及相应的 cuDNN 库。 4. **创建虚拟环境(推荐)** 使用 `conda` 创建一个新的 Python 环境可以避免冲突并简化管理: ```bash conda create -n pytorch_env python=3.8 conda activate pytorch_env ``` ### 安装 PyTorch 接下来将根据是否选择了 Conda 进行分步说明: #### 方式一:使用 Conda 直接安装 (推荐) ```bash conda install pytorch==1.7.1 torchvision torchaudio cudatoolkit=10.2 -c pytorch ``` > 注意这里的版本号可根据自身需求调整;同时确认使用的 CUDA 工具包版本与本地配置相符。 #### 方式二:使用 pip 安装 如果你倾向于不用 Miniconda 或 Anaconda,则可以通过pip命令完成同样的操作: 首先查看适用于你系统的安装指令: [官方安装指南](https://pytorch.org/get-started/locally/#start-locally) 然后选择正确的 CUDA 版本链接进行安装,例如对于 CUDA 10.2 用户来说: ```bash pip install torch===1.7.1+cu102 torchvision===0.8.2+cu102 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html ``` ### 检查安装情况 最后一步是验证GPU加速功能是否正常工作。可以在Python交互环境中输入以下代码测试: ```python import torch print(torch.cuda.is_available()) # 如果返回True表示成功启用GPU模式 ``` 如果一切顺利,你应该能够看到 True 并开始利用 GPU 加速深度学习任务了! ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值