自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(99)
  • 收藏
  • 关注

原创 推荐算法召回:架构理解

召回服务核心架构与挑战 召回层作为推荐系统的第一道漏斗,需在50ms内从亿级候选集中筛选千级别相关项,面临低延迟、高召回率、数据漂移等挑战。采用多路召回策略(规则/协同过滤/向量召回),结合实时特征与分层融合机制优化效果。关键技术包括模型轻量化(知识蒸馏、量化剪枝)、工程优化(分布式缓存、Faiss加速)及误杀控制方案。电商和内容平台的最佳实践显示,多策略组合可提升召回率至98.2%。未来方向涵盖RAG增强、端云协同和多场景自适应。核心在于平衡相关性、多样性与时效性,通过轻量模型和智能路由实现高效召回。

2025-07-18 17:53:26 532

原创 C++服务端思考:并发控制、配置热更新与命名空间

摘要:本文探讨多线程安全初始化、配置热更新及命名空间规范三大核心主题。1)利用std::once_flag实现线程安全的单例模式,避免双重检查锁定问题;2)通过事件驱动机制实现配置热更新,结合版本校验与原子操作保证数据一致性;3)规范C++命名空间使用,强调头文件声明用extern、源文件定义的原则,并推荐匿名命名空间限制符号可见性。文末通过综合案例展示高可靠配置管理模块的设计,融合一次性初始化、事件监听和命名空间隔离技术,体现"原子操作+事件抽象+作用域封装"的可靠性设计哲学。

2025-07-18 14:18:45 598

原创 CMake综合学习2: 构建高效可靠的C++中型服务项目以及现代CMake全链条指南

摘要: 本文系统介绍了如何利用现代CMake构建高效可靠的C++中型服务项目。通过模块化设计(分层目录结构、函数封装配置)、核心工具链集成(Mold链接器、IWYU检查)、质量工具(覆盖率测试、静态分析)和性能优化(并行编译、预编译头文件)四大关键环节,提供了一套完整的工程实践方案。重点强调了构建系统作为工程规范载体的长期价值,包括提升协作效率、保障代码质量和加速开发迭代。文章还涵盖跨平台支持与依赖管理策略,为团队提供开箱即用的技术解决方案。

2025-07-17 22:03:15 622 1

原创 CMake综合学习1: Cmake的模块化设计

CMake模块化设计通过include()引入.cmake文件实现代码复用与功能解耦,主要应用于:1)封装自定义函数/宏和构建逻辑;2)管理第三方依赖(如find_package);3)统一编译选项和策略配置;4)跨项目共享通用脚本。该方式能提升工程可维护性,但需注意路径处理和作用域控制。相比add_subdirectory(),include()更适合直接复用代码片段而非构建目标,是构建复杂CMake项目的核心组织策略。

2025-07-17 21:20:42 625

原创 截图文字秒提取!一个周末打造免启动的 macOS OCR 小工具

【一句话总结】 “用 Python + 开源库 30 行原型,踩坑两天,最终打包成 300 MB 的 macOS 托盘 OCR 小工具,拖框即复制,全程 vibe coding 实录。”【3 行速览】 1. 技术栈:Python 3.11 + easyocr + rumps + PyInstaller 2. 核心痛点:py2app 递归爆炸 → PyInstaller 救场;缺 rumps / 双图标 / 权限一次踩完 3. 结果:菜单栏常驻图标,左键即时 OCR,右键开关监听

2025-07-16 19:40:42 495

原创 深入C++虚函数表:从单继承到多继承的底层真相

C++虚函数机制解析:vptr与vtbl的内存布局与初始化过程 本文深入剖析C++虚函数实现原理,重点阐述虚函数表(vtbl)和虚指针(vptr)的运行机制。

2025-07-16 16:01:54 644

原创 给 JMS 续命:一个最小侵入的 Chrome 插件,后台自动保活不掉线

摘要:本文介绍了一个解决华为JMS堡垒机频繁超时问题的Chrome插件方案。该插件通过Service Worker后台脚本,每2分钟自动检测并激活JMS页面进行无感点击,避免因切出标签页导致的会话断开。文章详细解析了技术难点(Chrome后台标签页限制)、实现逻辑(使用tabs API和scripting API)、安装步骤以及常见问题解答。插件核心代码仅需60行,支持多窗口/标签页场景,能显著改善办公体验。最后作者提醒,该方案是临时性优化,建议运维调整心跳阈值才是根本解决之道。

2025-07-15 18:33:41 480

原创 数据埋点解析:clklog receiver神策埋点接收端代码解析

神策埋点接收服务端流程摘要接收 → 解压 → 补全 → 清洗 → 落库 → 转发”,全链路高性能埋点数据落地方案。

2025-07-14 21:31:22 843

原创 C++内存布局、构造函数规则和优化策略解析

本文深入解析C++类对象的内存布局与构造机制。主要内容包括:1) 类内存布局规则,详述非静态成员、虚函数、静态成员的内存分配及对齐机制;2) 编译器隐式生成构造函数的触发条件,如成员/基类含构造器、虚函数等情况;3) 关键机制解析,包括this指针调整、深浅拷贝实现、初始化列表优化;4) 内存优化策略,如对齐控制、虚函数优化和移动语义应用。通过offsetof宏和实例代码验证内存布局,强调理解编译器隐式行为与显式控制相结合的高效类设计方法。

2025-07-14 14:59:59 980

原创 mac上BRPC的CMakeLists.txt优化:解决Protobuf路径问题

优化摘要:macOS上BRPC构建的Protobuf路径问题解决方案 针对BRPC在macOS系统构建中遇到的Protobuf路径问题。

2025-07-13 21:48:05 1100

原创 cmake:execute_process解析

这段 CMake 代码通过执行 Bash 命令动态定位项目构建目录。主要功能是:在项目源目录的上两级路径中,递归查找"output/include"目录,提取其父路径并存储到CMake变量OUTPUT_PATH中。命令使用find搜索目录,head取第一条结果,xargs获取父路径,tr去除换行符。该技巧常用于自动配置头文件和库路径,但需注意路径空格和多结果风险。典型应用于跨平台构建、多模块项目等场景,可避免路径硬编码,提升构建系统灵活性。

2025-07-13 19:17:06 646

原创 brpc中bthread_start_urgent和tls_task_group详细机制分析

摘要1:brpc中bthread_start_urgent机制分析 brpc的bthread_start_urgent采用协作式调度机制,通过保存老任务的完整上下文(寄存器、栈指针等)到独立栈空间实现任务切换,确保老任务后续可安全恢复。该机制通过bthread_jump_fcontext等汇编操作保存状态,避免资源冲突和状态丢失。开发者需注意长耗时操作阻塞worker、TLS访问等边界情况,建议控制临界区长度并确保任务可中断。该设计在保证高优先级任务调度的同时,维持了老任务的状态安全性。 摘要2:brpc

2025-07-12 18:55:50 1195

原创 ​BRPC核心架构解析:高并发RPC框架的设计哲学

摘要: BRPC框架通过M:N线程模型(bthread)实现高并发,将百万级用户态线程映射到少量系统线程,显著降低上下文切换开销。其核心设计包括协作式调度(主动让出CPU)、无锁任务队列及Work Stealing负载均衡,结合栈内存复用和异步I/O优化性能。网络层支持零拷贝与多协议,提供智能负载均衡和连接池管理。与pthread混合使用时需注意阻塞问题,推荐场景包括高并发网络服务与低延迟系统。BRPC以用户态调度和异步融合实现高性能,平衡同步编程直观性与多核效率。

2025-07-12 18:39:59 1356

原创 深度机器学习环境搭建:从pixiw安装到TensorNet问题解决全攻略

这篇技术指南详解了深度学习环境搭建的常见问题及解决方案。文章分为三大部分:1)pixiw安装优化,推荐使用预编译包避免源码编译耗时;2)MPI配置难题,提供手动指定路径的硬链接方案;3)TensorNet依赖冲突处理,包括版本锁定、protobuf冲突解决和GLIBCXX缺失问题。最后总结环境搭建的核心在于依赖关系精确控制,强调环境隔离、编译排错技巧和系统库兼容策略的重要性。全文提供具体命令行操作和系统性解决方案,帮助开发者高效搭建稳定的深度学习环境。

2025-07-12 14:15:18 513

原创 brpc中的bthread_jump_fcontext汇编函数到底发生了什么?

摘要:本文详细解析了brpc中bthread_jump_fcontext汇编函数的上下文切换机制。该函数通过保存当前协程的寄存器状态(包括浮点寄存器)到栈中,然后将栈指针切换至目标协程的上下文,最后恢复目标协程的寄存器状态并跳转执行。整个切换过程仅需约30条指令,核心操作是通过movq %rsi, %rsp指令修改栈指针寄存器,实现用户态线程的高效切换。函数严格遵守System V AMD64 ABI规范,通过精心设计的寄存器操作和栈管理,为bthread提供了高性能的上下文切换能力。

2025-07-10 21:16:06 992

原创 bRPC源码解析:深入理解bthread协程机制与上下文切换的底层实现

bthread用户态线程实现解析 bthread作为bRPC框架的核心组件,通过M:N线程模型实现了高性能用户态线程。相比传统内核线程,bthread将创建/切换时间从微秒级降至纳秒级,单机可承载百万级并发协程。其核心实现包括:1)使用mmap分配协程栈并设置保护页;2)通过汇编函数bthread_make_fcontext初始化协程上下文;3)利用bthread_jump_fcontext实现寄存器状态的保存与恢复。性能测试显示,bthread在创建、切换及并发量上相比pthread有数量级提升。

2025-07-10 21:00:03 639

原创 粗排样本架构升级:融合LTR特征提升模型性能的技术实践

本文介绍了粗排系统在推荐系统中的技术演进与架构升级实践。通过引入精排级特征融合LTR技术,构建了兼顾精度与性能的粗排样本架构。关键技术包括:1)动态负采样与样本偏差控制;2)多源特征融合,涵盖用户、物料、交叉及上下文特征;3)精排特征蒸馏机制。工程实现优化了特征编码、分布式存储和实时特征查询。该方案使粗排与精排结果重合度提升18%,点击率提升7.2%。未来将探索在线特征服务、模型蒸馏等方向,进一步优化粗排作为智能过滤器的性能。

2025-07-10 19:29:37 1048

原创 BRPC负载均衡:高并发场景下的智能流量调度艺术

BRPC负载均衡体系采用三层架构设计,包括命名服务(支持动态发现)、负载均衡(无锁双缓冲技术)和健康检查(隔离检测机制)。文章对比了多种负载均衡算法(轮询、随机、权重等)的适用场景,并详细解析了健康检查的动态探活策略和连接复活机制。针对节点抖动、雪崩保护等典型问题提供了解决方案,通过性能压测数据验证了不同算法的效果差异。最后总结了最佳实践,包括命名服务选型、算法组合策略和健康检查调优公式,帮助实现高并发场景下的智能流量调度。该系统在百度地图服务中成功支撑了百万QPS的低延迟需求。

2025-07-09 21:54:28 1083

原创 BRPC自适应限流:动态并发控制的工程艺术

BRPC自适应限流通过动态调控并发值实现服务自我保护,解决了传统固定阈值无法适应负载变化的痛点。该方案基于Little's Law设计,通过双EMA策略动态计算最小延迟和峰值QPS,结合周期性衰减机制避免基准漂移。相比Netflix方案具备更快的收敛速度和稳定性,在百度地图、电商秒杀等场景中验证了效果。关键优势包括:自动适应流量波动(支持300%流量变化)、毫秒级响应过载(2秒完成调整)、资源利用率提升30%。实施时需关注α系数调优、初始值设置和监控指标跟踪,最终实现系统在过载时自动限流保护。

2025-07-09 16:15:30 993

原创 基于BRPC构建高性能HTTP/2服务实战指南

BRPC的HTTP/2服务架构采用Protobuf定义接口,通过Controller对象处理完整HTTP上下文,支持三种路由模式(标准服务、资源路径和RESTful映射)。提供精准的头部控制、智能压缩和流式响应等协议优化功能,并支持HTTPS配置与生产环境调优。针对常见问题给出解决方案,如Nginx报错处理、Query解析异常和流控策略实现。BRPC的HTTP/2服务具有协议统一、高性能、流式支持和无缝加密等优势,已在百度多个产品中验证,单实例可支撑10万+QPS。

2025-07-09 15:23:44 489

原创 高性能RPC框架BRPC核心机制解析:线程模型与私有变量设计

BRPC框架通过分层设计实现高效的私有变量管理:Server-Thread-Local提供线程级存储,适合同步场景;Bthread-Local支持协程跨线程迁移;Session-Local用于异步请求。框架采用双缓冲、对象池化等技术优化性能,并针对不同场景提供三级抽象:线程/协程/会话级存储。关键设计包括预分配机制、惰性分配策略和与调度器的深度整合,在保证内存可控的同时实现无锁读写。生产实践中需注意协程变量析构陷阱和内存泄漏防护,根据数据访问频率和生命周期合理选择存储方案。

2025-07-08 18:03:53 696

原创 BRPC服务端私有数据管理:Session-Local的设计与实践

摘要: BRPC的Session-Local机制为异步高并发RPC服务提供请求级私有数据管理方案,解决传统线程局部存储(TLS)在异步场景下的生命周期和并发效率问题。其核心设计包括:1)与RPC请求严格绑定的对象生命周期;2)通过DataFactory实现对象复用与预分配优化;3)无锁访问的请求上下文管理。相比Thread-Local,Session-Local更适用于请求级状态(如鉴权Token、链路追踪ID),在异步回调中仍能安全访问。最佳实践建议结合对象池化和双缓冲技术,避免跨请求状态残留和异步陷阱。

2025-07-08 16:58:20 677

原创 brpc中后端server挂在同一个命名服务和不同命名服务的区别详解

摘要:命名服务在分布式系统中负责服务地址的注册与发现,维护服务名到服务器实例的映射关系。bRPC框架中,Channel通过命名服务自动获取可用服务器列表并处理负载均衡。备份请求机制分为两种场景:1) 同命名服务内的服务器使用单Channel,超时后自动触发同集群内的备份请求,高效且压力小;2) 不同命名服务的服务器使用SelectiveChannel,超时后触发跨集群备份请求,实现容灾互备。文档推荐避免使用手动Join+Cancel的双请求方案,因其效率低下。

2025-07-08 15:08:14 1004

原创 构建高效分布式系统:bRPC组合Channels与HTTP/H2访问指南

bRPC通过组合Channels和HTTP/H2协议优化,为构建高性能分布式系统提供完整解决方案。组合Channels包含ParallelChannel、SelectiveChannel等四种模式,支持复杂访问场景的灵活处理;HTTP/H2协议访问则涵盖基础请求、流式传输、压缩优化等关键功能。该方案有效解决了多层级RPC调用、协议兼容性等分布式系统核心问题,适用于微服务网关、数据库分库迁移等典型场景,实现高性能网络通信与服务架构无缝演进。

2025-07-08 13:26:30 529

原创 算法工程师必知的埋点体系全解析​ ​

本文系统解析了算法工程师必备的埋点知识体系,涵盖设计、实现与应用全流程。核心内容包括:1)基于4W1H原则的结构化事件模型设计方法;2)代码埋点、可视化埋点等技术方案的选型策略;3)工业级部署的ODEIIC五步规范流程;4)数据在漏斗分析、用户分群等场景的应用实践。文章还展望了Serverless架构、动态埋点等前沿技术趋势,并提供了埋点健康度评估标准。通过结构化设计和工程化实施,埋点体系可转化为业务增长的强力支撑。

2025-07-07 19:26:10 1027

原创 DCN2:大规模推荐系统中的碰撞权重与显式交叉层协同优化

摘要: Teads团队提出DCN2架构,解决DCNv2在工业级推荐系统中的三大瓶颈:嵌入哈希碰撞(通过碰撞权重机制动态调节)、交叉层信息损失(采用全维度OnlyDense层)、隐式交互偏差(引入显式SimLayer)。实验显示DCN2在Criteo等数据集上AUC提升0.11%-1.15%,线上部署优化后稳定处理5亿+QPS,RPM提升3.2%。该架构通过三重创新实现特征交互与系统效率的协同优化,为大规模推荐系统提供新范式。

2025-07-07 17:16:44 995

原创 深入解析brpc客户端基础功能:从原理到最佳实践

摘要: brpc客户端设计基于Channel核心概念,体现高性能、易用性和灵活性。Channel具备线程安全、轻量级、复用性等特性,支持单机/集群连接,提供多种负载均衡算法(RR、WRR、随机等)和协议(HTTP/Thrift/Redis等)。请求模式包含同步调用(推荐默认)和异步调用(高性能场景),需注意各自的生命周期管理。高级功能包括超时重试、连接池优化和SSL安全配置。最佳实践建议复用Channel对象,合理配置备份请求和监控集成。

2025-07-06 18:49:51 708

原创 C++原子内存顺序:六大顺序的记忆法则

摘要:C++原子内存顺序的TRAVEL记忆模型系统化总结了六种内存顺序:Relaxed(独立计数器)、Release(写操作)、Acquire(读操作)、Acq_rel(读改写)、Seq_cst(全局同步)和Consume(弃用)。文章提供了决策树指导选择,强调配对的release/acquire使用,并指出常见错误如顺序混用和过度使用seq_cst。通过性能阶梯和80%场景口诀,帮助开发者在正确性与性能间取得平衡。

2025-07-06 12:45:05 998

原创 brpc怎么解决C++静态初始化顺序难题的?

静态初始化顺序难题是C++中全局/静态对象初始化顺序不确定导致的经典问题。butil::static_atomic通过"零初始化+类型转换"模式有效解决此问题:1)利用基本类型零初始化特性;2)通过reinterpret_cast将普通存储转为原子操作;3)保持与std::atomic相同API。该方案特别适合全局计数器等场景,在保证原子操作的同时规避了初始化顺序风险,是高性能C++程序处理静态存储期原子对象的优选方案,体现了对C++对象生命周期和内存模型的深刻理解。

2025-07-06 12:29:49 748

原创 深入解析brpc并发模型:bthread、Execution Queue与线程安全的艺术

本文深入解析了brpc框架中的并发机制,重点介绍了bthread和Execution Queue的原理与应用。bthread作为M:N线程模型实现,具有高并发低成本的特点,适用于并行计算场景;Execution Queue则提供有序任务处理能力,适合批量操作。文章详细对比了不同并发工具的适用场景,并指出常见陷阱如线程局部存储的风险。通过QPS*Latency公式的决策模型,指导开发者合理选择并发策略,同时给出性能优化建议。最后强调应根据服务需求渐进式采用并发方案,平衡性能与复杂度。

2025-07-06 09:09:16 1080

原创 深入解析brpc监控多维度最大值监控变量定义

摘要:本文详细解析了bvar::MultiDimension多维监控容器的实现与应用。该组件通过模板类构建,支持Maxer<int>等统计器类型,使用维度标签(如idc、method、status)实现细粒度监控。工作原理包括维度路由匹配、统计器更新和数据持久化,适用于请求延迟等场景监控。文章包含代码示例、性能优化建议(标签复用、维度裁剪)和常见问题排查方法,并解读了其关注点分离、惰性初始化等设计哲学。该方案通过声明式编程实现高性能多维监控,帮助开发者低成本获取系统深度洞察。

2025-07-05 18:04:50 348

原创 深入解析百度bvar与mbvar:高效C++监控库实战指南

百度开源的高性能C++监控库bvar和mbvar专为分布式系统设计,提供毫秒级实时监控。bvar支持单维度基础指标(计数/最大值/平均值)和时间窗口统计,mbvar实现多维度业务分析。两者采用无锁架构,内存占用低(1-100KB),延迟小于5ms,支持Prometheus集成。建议从bvar建立基础监控,逐步过渡到mbvar进行多维度业务洞察,配合使用可构建系统层到业务层的完整监控体系。典型应用场景包括延迟监控、QPS统计和错误分析等。

2025-07-05 17:49:55 496

原创 新商品冷启动:基于语义Embedding与GBRT的消费指标预估技术实践

本文提出了一种基于语义理解和GBRT的新商品冷启动解决方案,用于解决电商平台新商品因缺乏用户行为数据而难以准确推荐的问题。方案通过Qwen3模型提取商品语义特征,构建1280维向量表征商品内容,再采用梯度提升树预测消费指标XTR。实验表明,该方法显著提升了新商品的转化率和GMV,优化后模型误差率降至4.5%。文章还讨论了模型过拟合风险和改进方向,包括增强正则化、引入多模态特征等,为电商平台新商品推荐提供了有效的技术路径。

2025-07-04 21:32:37 921

原创 C++高级特性解析:RTTI、移动语义与性能优化

摘要: 本文深入解析现代C++的核心机制,包括运行时类型识别(RTTI)、左值/右值引用、移动语义及性能优化技巧。RTTI依赖虚函数表实现类型识别与安全转型;左值/右值引用语义是资源高效管理的基础,需注意绑定规则;移动语义通过std::move转换所有权,避免冗余拷贝;性能优化涉及临时对象消除、隐式转换控制及编译器合成的移动操作规则。最后强调五法则、完美转发及容器中的移动应用,提出优先使用常量引用、移动语义等实践建议,以提升程序效率与资源利用率。

2025-07-03 18:32:32 796

原创 C++核心特性深度解析:从静态变量到多态实现

本文系统解析C++七大核心特性实现机制:1)静态变量在全局数据区的分配规则与初始化时序;2)安全宏编写规范与条件编译应用场景;3)类继承访问控制矩阵与拷贝构造触发条件;4)四种类型转换的安全等级对比;5)虚表机制实现多态的原理及虚析构必要性;6)静态成员替代全局变量的封装优势;7)宏函数风险与替代方案。通过剖析内存模型和编译器行为,揭示从静态存储到动态绑定的底层实现,并给出工程实践中的最佳应用准则。

2025-07-02 14:09:17 1085

原创 TensorFlow源码深度阅读指南

本文基于《TensorFlow内核剖析》附录A,系统介绍了TensorFlow源码阅读的方法论与技术要点。文章从四个维度展开:1)分层切入策略,包括自顶向下和自底向上两种代码追踪路径;2)高效源码导航工具链配置,涵盖IDE设置、交互式调试和源码分析工具;3)核心机制精读,重点解析自动微分、设备内存管理和分布式通信等关键实现;4)卷积算子源码的实战分析。文中提供多个代码片段展示核心逻辑,并推荐"三遍阅读法"与实用调试命令,帮助开发者快速掌握2000万行代码的核心架构。

2025-07-01 15:42:39 1007

原创 TensorFlow模型训练核心技术深度解析

本文深度解析TensorFlow模型训练的四大核心技术:1)自动微分系统实现反向传播的梯度注册机制与动态图构建;2)优化器的分层架构与分布式同步策略对比;3)模型持久化的二进制格式与增量存储算法;4)工业级优化技巧如混合精度训练与数据流水线优化。通过7张图示与代码示例,揭示了TensorFlow如何实现高效模型训练,其中256卡A100集群实测显示优化策略可提升GPT-3训练速度4.2倍。

2025-07-01 15:37:51 1214

原创 TensorFlow内核剖析:分布式TensorFlow架构解析与实战指南

本文深入解析了TensorFlow分布式架构的核心设计原理与实现机制。主要内容包括: 架构设计:采用Master-Worker架构,Master负责全局协调和任务分配,Worker执行计算任务,PS节点可选用于参数存储更新。 执行流程:详细剖析了图剪枝、两级分裂(按任务和设备)、跨设备通信(Rendezvous抽象)等关键环节的实现。 实战指南:提供了设备编排策略、数据并行模板、参数服务器配置等部署方案,以及梯度压缩、流水线执行等性能优化技巧。

2025-07-01 15:00:26 719

原创 TensorFlow运行时核心:DirectSession::Run全解析

TensorFlow本地执行模式的核心流程分为三个阶段:图剪枝生成ClientGraph、设备间图分裂、跨设备并发执行。图剪枝通过反向BFS提取最小依赖子图,并重构输入/输出节点。图分裂阶段将ClientGraph按设备拆分为多个子图,处理跨设备边时插入Send/Recv节点对。并发执行时,Executor调度各子图,通过Rendezvous机制实现跨设备通信,其双缓冲队列和异步回调设计确保了高效数据传输。Rendezvous统一了异构设备通信,预防死锁并优化性能。DirectSession::Run通过这

2025-06-30 17:04:30 1124

原创 python: 深入解析Python with语句与上下文管理器

摘要: Python的with语句通过上下文管理器(实现__enter__和__exit__方法的对象)自动管理资源,确保文件、数据库连接等资源的及时释放,避免传统try-finally的冗余代码。核心机制包括:进入代码块调用__enter__获取资源,退出时调用__exit__释放资源,即使发生异常也能安全处理。典型场景涵盖文件操作、数据库连接、线程锁等,而contextlib模块可快速创建上下文管理器。多重资源管理和动态资源处理(如ExitStack)进一步扩展了其应用范围,显著提升代码健壮性与简洁性。

2025-06-30 14:34:47 768

Jumpserver Chrome插件保持长连接不掉线2025最新版

jms jumpserver连接保持chrome插件,基本可以保持长连接,不会中途很快web socket closed

2025-07-15

【数据库技术】SQL练习题集:涵盖多表关联、窗口函数、子查询优化及电商场景数据分析

内容概要:本文档《sql练习.pdf》提供了一系列SQL练习题目,涵盖了多种数据库操作技巧。题目围绕多个表结构展开,包括学生表、课程表、成绩表、教师表以及电商场景下的订单表等。练习内容涉及成绩分析、条件筛选、多表关联、窗口函数应用、复杂条件查询、子查询优化、电商场景数据分析、递归查询、行列转换、连续登录检测、动态分组统计、时空窗口计算、复杂关联查询、空值处理、电商漏斗分析、时间序列预测、异常检测、组合查询、分层抽样以及复杂业务计算等方面。每个题目都详细给出了表结构定义、查询需求及相应的SQL语句示例,帮助读者深入理解并掌握SQL查询技巧。 适合人群:适合有一定SQL基础的学习者或从事数据分析、数据库管理工作的人员,特别是希望提升SQL查询能力和解决实际问题能力的读者。 使用场景及目标:①适用于想要系统化练习SQL查询技能的学习者;②为数据分析师、数据库管理员等专业人士提供实战案例,提高解决复杂业务问题的能力;③帮助读者掌握多种SQL高级特性,如窗口函数、递归查询、分组聚合等的实际应用方法。 阅读建议:建议读者先熟悉提供的表结构,然后逐题尝试编写SQL语句解决问题,在遇到困难时参考提供的解决方案。通过不断实践与对比,加深对SQL语法的理解,逐步提高自己的查询水平。同时,鼓励读者思考每道题目的业务背景,理解SQL在实际工作中的应用场景。

2025-07-11

算法工程师数据技术栈入门

算法工程师数据技术栈入门

2025-07-11

行列式点过程(DPP)在推荐系统中的应用

行列式点过程(DPP)在推荐系统中的应用 包含: 前端代码 后端演示 资源配置文件

2025-06-30

yolo-project.zip

1. 数据资源 * **视频数据** :用户上传的视频文件是主要的数据来源,文件类型包括 “mp4”“avi”“mov” 等。这些视频将被 YOLO 模型用于目标检测。 * **图片数据** :pic_demo.py 文件中使用了 “bus.jpg” 图片作为示例数据,用于展示 YOLO 模型对图片中目标的检测效果。 2. 模型资源 * **YOLO 模型** :代码中使用了 Ultralytics 提供的 YOLO 模型

2025-05-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除