使用Torchvision实现Deep SORT——实时对象检测与对象追踪

本文介绍了如何利用Torchvision库和Deep SORT算法进行实时对象检测和追踪。首先,安装deep_sort_realtime库,然后用torchvision加载模型进行对象检测,接着通过DeepSort进行追踪。在COCO_91_CLASSES列表基础上,定义转换和注释函数以适应DeepSort。最后,展示在视频上同时进行对象检测和追踪的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对象检测算法,我们前期的文章介绍过了很多算法,包含openCV,YOLOv系列检测算法,基于transformer模型的DETR等等模型,都可以进行对象检测。但是对于对象追踪我们很少介绍过,什么是对象追踪?通俗易懂的说法便是在对象检测的基础上,进行对象的实时追踪。

动图封面

类似上图图片,我们使用对象检测算法,已经检测到了骑摩托车的人,但是每个骑摩托车的人都是独立的个体,若想实现对象追踪,我们就需要给每个人添加一个标签,或者一个ID,这样在对象检测的基础上,添加对象的ID标签,并能够实时进行对象的追踪,确保对象在可检测范围内,能够被算法实时识别,且ID唯一。openCV库下面有8个对象追踪算法可以使用,这里我们不介绍openCV库对象追踪算法,这里我们使用Torchvision实现Deep SORT对象追踪算法。

要实现Deep SORT对象追踪算法,我们需要先安装deep_sort_realtime库,这里安装此库直接使用pip安装即可。

! pip install deep_sort_realtime
Collecting deep_sort_realtime
  Downloading deep_sort_realtime-1.3.2-py3-none-any.whl (8.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.4/8.4 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值