基于图像识别的ui操作--4

本文介绍了一种将图片识别技术应用于测试脚本的方法,通过循环匹配多个待识别图片,实现快速准确的自动化测试操作。该方法适用于Windows环境,有效解决了因不同状态导致的图片变化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天第一次把图片识别应用到实际的测试脚本中。windows环境下,效果不错。
更新一个方法
pics_match(*args) *args为传入的待匹配图片

#循环对传入的图片进行匹配,可以选择check_and_click()方法 或 wait_and_match_process() 方法进行匹配,匹配一轮后没有
    #合适的结果则抛出异常,否则可以进行点击,返回True
    def pics_match(self,*args,func='check_and_click',timeout=20,click=True):   #循环*args中的图片进行匹配
        pics = list(args)
        pics.insert(0,self._pic)
        for pic in pics:
            logging.debug('Now %s'% pic)
            self._pic = pic
            self.match_pic = cv.imread(os.path.join(MATCH_PIC_PATH, pic))
            self.target_click_point = self.pic_match()
            self.point_x, self.point_y = self.main()
            if func == 'check_and_click':  #只截取一张全屏图 对这张图片进行匹配
                if self.check_and_click(ignore=True,click=click):
                    return True
            if func == 'wait_and_match_process':
                if self.wait_and_match_process(timeout=timeout,click=click,ignore=True):
                    return True
        raise KeyError('【pics-未匹配到】%s' % str(args))

这个方法主要用于,一些待匹配图片可能在测试过程中,因为不同的状态而有不同的样子。 可以把 不同状态下的图片传入 *args。 只要匹配到,则进行操作。使用 func=‘check_and_click’ 只进行一次截图,所以匹配的速度比较快。

整个图片识别目前发现的弱点在于 处理速度较慢。原因在于截图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值