今天第一次把图片识别应用到实际的测试脚本中。windows环境下,效果不错。
更新一个方法
pics_match(*args) *args为传入的待匹配图片
#循环对传入的图片进行匹配,可以选择check_and_click()方法 或 wait_and_match_process() 方法进行匹配,匹配一轮后没有
#合适的结果则抛出异常,否则可以进行点击,返回True
def pics_match(self,*args,func='check_and_click',timeout=20,click=True): #循环*args中的图片进行匹配
pics = list(args)
pics.insert(0,self._pic)
for pic in pics:
logging.debug('Now %s'% pic)
self._pic = pic
self.match_pic = cv.imread(os.path.join(MATCH_PIC_PATH, pic))
self.target_click_point = self.pic_match()
self.point_x, self.point_y = self.main()
if func == 'check_and_click': #只截取一张全屏图 对这张图片进行匹配
if self.check_and_click(ignore=True,click=click):
return True
if func == 'wait_and_match_process':
if self.wait_and_match_process(timeout=timeout,click=click,ignore=True):
return True
raise KeyError('【pics-未匹配到】%s' % str(args))
这个方法主要用于,一些待匹配图片可能在测试过程中,因为不同的状态而有不同的样子。 可以把 不同状态下的图片传入 *args。 只要匹配到,则进行操作。使用 func=‘check_and_click’ 只进行一次截图,所以匹配的速度比较快。
整个图片识别目前发现的弱点在于 处理速度较慢。原因在于截图。