Python高级gil面试题

GIL⾯试题如下

描述Python GIL的概念, 以及它对python多线程的影响?编写⼀个多
线程抓取⽹⻚的程序,并阐明多线程抓取程序是否可⽐单线程性能有提
升,并解释原因。

Guido的声明:http://www.artima.com/forums/flat.jsp?
forum=106&thread=214235

he language doesn’t require the GIL – it’s only the CPython virtual machinethat has historically been unable to shed it.

参考答案:

  1. Python语⾔和GIL没有半⽑钱关系。仅仅是由于历史原因在
    Cpython虚拟机(解释器),难以移除GIL。
  2. GIL:全局解释器锁。每个线程在执⾏的过程都需要先获取GIL,保
    证同⼀时刻只有⼀个线程可以执⾏代码。
  3. 线程释放GIL锁的情况: 在IO操作等可能会引起阻塞的system call
    之前,可以暂时释放GIL,但在执⾏完毕后,必须重新获取GIL Python
    3.x使⽤计时器(执⾏时间达到阈值后,当前线程释放GIL)或
    Python 2.x,tickets计数达到100
  4. Python使⽤多进程是可以利⽤多核的CPU资源的。
  5. 多线程爬取⽐单线程性能有提升,因为遇到IO阻塞会⾃动释放GIL
### Python 高级开发工程师常见面试题及答案解析 #### 1. 解释 Python 中的 GIL(全局解释器锁)及其对多线程的影响 Python 的全局解释器锁(GIL)是一种机制,它确保任何时候只有一个线程执行 Python 字节码。这意味着即使在多核处理器上,Python 的多线程程序也无法实现真正的并行执行。GIL 的存在主要是为了简化 CPython 解释器的设计,并保证内存管理的安全性。然而,这也意味着 CPU 密集型任务在多线程环境下并不能显著提升性能,而 I/O 密集型任务仍然可以通过多线程受益[^3]。 #### 2. Python 中的装饰器是什么?请举例说明其用途 装饰器本质上是一个函数,它可以接受另一个函数作为参数,并扩展该函数的行为而不修改其源代码。装饰器广泛用于增强函数功能、记录日志、缓存结果等场景。例如,以下是一个简单的装饰器示例: ```python def my_decorator(func): def wrapper(*args, **kwargs): print("Before function call") result = func(*args, **kwargs) print("After function call") return result return wrapper @my_decorator def say_hello(): print("Hello") say_hello() ``` 在这个例子中,`@my_decorator` 修饰了 `say_hello` 函数,使其在调用前后打印额外的信息。 #### 3. 解释 Python 中的生成器(Generator)及其优势 生成器是一种特殊的迭代器,它允许你按需生成值,而不是一次性将所有值存储在内存中。生成器通过 `yield` 关键字实现,能够有效地处理大数据集或无限序列。例如: ```python def fibonacci(n): a, b = 0, 1 while a < n: yield a a, b = b, a + b for number in fibonacci(100): print(number) ``` 生成器的优势在于节省内存,并且可以用于处理延迟计算或流式数据。 #### 4. 解释 Python 中的多继承以及 MRO(方法解析顺序) Python 支持多继承,即一个类可以从多个父类继承属性和方法。当多个父类定义了相同的方法时,Python 使用 C3 线性化算法来确定方法解析顺序(MRO)。可以通过 `__mro__` 属性或 `mro()` 方法查看类的 MRO。例如: ```python class A: def foo(self): print("A") class B(A): def foo(self): print("B") class C(A): def foo(self): print("C") class D(B, C): pass print(D.__mro__) ``` 输出结果为:`(<class 'D'>, <class 'B'>, <class 'C'>, <class 'A'>, <class 'object'>)`。 #### 5. 解释 Python 中的深拷贝与浅拷贝 浅拷贝创建一个新对象,但其中的元素仍然是原对象中元素的引用。深拷贝则递归地复制原对象中的所有元素,生成一个完全独立的新对象。可以通过 `copy` 模块中的 `copy()` 和 `deepcopy()` 函数实现: ```python import copy original = [[1, 2], [3, 4]] shallow = copy.copy(original) deep = copy.deepcopy(original) # 修改原始对象 original[0].append(5) print("Shallow copy:", shallow) # 输出 [[1, 2, 5], [3, 4]] print("Deep copy:", deep) # 输出 [[1, 2], [3, 4]] ``` 浅拷贝中的嵌套列表仍然与原始对象共享引用,而深拷贝则完全独立。 #### 6. 解释 Python 中的 `__slots__` 及其用途 `__slots__` 是一个类变量,它允许你显式声明类的实例属性,从而减少内存占用并提高访问速度。使用 `__slots__` 后,类的实例将不会拥有 `__dict__` 属性,因此不能动态添加新的属性。例如: ```python class Person: __slots__ = ['name', 'age'] def __init__(self, name, age): self.name = name self.age = age p = Person("Alice", 30) p.name = "Bob" # p.gender = "Male" # 这行会抛出 AttributeError ``` `__slots__` 常用于需要大量实例化且属性固定的类,以优化性能和内存使用。 #### 7. 解释 Python 中的 `__name__ == "__main__"` 的作用 `__name__ == "__main__"` 是一个常见的 Python 代码模式,用于判断当前模块是否是作为主程序运行。如果是,则执行相应的代码块;否则,如果模块被导入,则不会执行。例如: ```python def main(): print("This is the main function") if __name__ == "__main__": main() ``` 这个模式常用于测试模块的功能或作为程序的入口点。 #### 8. 解释 Python 中的元类(Metaclass)及其用途 元类是创建类的“类”,它控制类的创建过程。默认情况下,Python 使用 `type` 作为元类来创建类。通过自定义元类,可以在类定义时自动添加属性或方法。例如: ```python class MyMeta(type): def __new__(cls, name, bases, dct): if 'required_method' not in dct: raise TypeError("必须实现 required_method 方法") return super().__new__(cls, name, bases, dct) class MyClass(metaclass=MyMeta): def required_method(self): pass class MyBadClass(metaclass=MyMeta): pass # 这会抛出 TypeError ``` 元类常用于实现单例模式、接口检查、自动属性注入等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值