
图像处理
文章平均质量分 86
IT之一小佬
敲响键盘之乐,跳起程序之舞,抵达智慧之巅!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
卷积神经网络(CNN)实现CIFAR100类别分类
卷积神经网络(CNN)实现CIFAR100类别分类1. CIFAR100数据集介绍这个数据集就像CIFAR-10,除了它有100个类,每个类包含600个图像。,每类各有500个训练图像和100个测试图像。CIFAR-100中的100个类被分成20个超类。每个图像都带有一个“精细”标签(它所属的类)和一个“粗糙”标签(它所属的超类) 以下是CIFAR-100中的类别列表:等等...2. API 使用用于构建CNN模型的API Conv2D:实现卷积,kernel_size,str原创 2021-06-17 16:54:44 · 9151 阅读 · 4 评论 -
卷积神经网络(CNN)原理详解
卷积神经网络(CNN)原理详解1. 卷积神经网络的组成定义 卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷积神经网络在图像等方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他浅层或深度神经网络,卷积神经网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 我们来看一下卷积网络的整体结构什么样子。其中包含了几个主要结构卷积层(Convolutions) 池化层(Subsampling) 全连接层(Full c原创 2021-06-17 13:56:24 · 29886 阅读 · 10 评论 -
卷积神经网络(CNN)简介
卷积神经网络(CNN)简介多层的线性网络和单层的线性网络没有区别,而且线性模型的能够解决的问题也是有限的1.更复杂抽象的数据一个单隐含层有更多的神经元,就能捕捉更多的特征。而且有更多隐层,意味着能从数据集中提取更多复杂的结构。增加网络深度使用非线性激活函数2. 激活函数的选择涉及到网络的优化时候,会有不同的激活函数选择有一个问题是神经网络的隐藏层和输出单元用什么激活函数。之前我们都是选用 sigmoid 函数,但有时其他函数的效果会好得多,大多数通过实践得来,没有很好的.转载 2021-06-17 11:01:16 · 711 阅读 · 0 评论 -
深层神经网络与优化算法
深层神经网络与优化算法为什么使用深层网络对于人脸识别等应用,神经网络的第一层从原始图片中提取人脸的轮廓和边缘,每个神经元学习到不同边缘的信息;网络的第二层将第一层学得的边缘信息组合起来,形成人脸的一些局部的特征,例如眼睛、嘴巴等;后面的几层逐步将上一层的特征组合起来,形成人脸的模样。随着神经网络层数的增加,特征也从原来的边缘逐步扩展为人脸的整体,由整体到局部,由简单到复杂。层数越多,那么模型学习的效果也就越精确。通过例子可以看到,随着神经网络的深度加深,模型能学习到更加复杂的问题,功能也更加强大原创 2021-06-16 22:05:48 · 969 阅读 · 0 评论 -
Tensorflow实现神经网络及实现多层神经网络进行时装分类
Tensorflow实现神经网络1. tf.keras构建模型训练评估测试API介绍import tensorflow as tffrom tensorflow import keras1.1 构建模型1、Keras中模型类型:Sequential模型 在 Keras 中,您可以通过组合层来构建模型。模型(通常)是由层构成的图。最常见的模型类型是层的堆叠,keras.layers中就有很多模型,如下图:可以在源码文件中找到 tf.keras.Sequential模型(layer原创 2021-06-16 17:42:49 · 1574 阅读 · 1 评论 -
神经网络原理
神经网络原理神经网络的主要用途在于分类,那么整个神经网络分类的原理是怎么样的?接下来还是围绕着损失、优化这两块去说。神经网络输出结果如何分类?【全连接层的作用用于分类概率的计算】神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数。任意事件发生的概率都在0和1之间,且总有某一个事件发生(概率的和为1)。如果将分类问题中“一个样例属于某一个类别”看成一个概率事件,那么训练数据的正确答案就符合一个概率分布。如何将神经网络前向传播得到的结果也变成概率分布呢?Softma原创 2021-06-16 10:46:04 · 778 阅读 · 0 评论 -
神经网络基础
神经网络基础1.1 神经网络人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的计算模型。经典的神经网络结构包含三个层次的神经网络。分别输入层,输出层以及隐藏层。其中每层的圆圈代表一个神经元,隐藏层和输出层的神经元有输入的数据计算后输出,输入层的神经元只是输入。神经网络的特点 每个连接都有个权值 同一层神经元之间没有连接 最后的输出结果对应的层也称之为.原创 2021-06-16 10:09:18 · 508 阅读 · 0 评论 -
图片基础与tf.keras介绍
图片基础与tf.keras介绍1.1 图像基本知识回忆:之前在特征抽取中如何将文本处理成数值。思考:如何将图片文件转换成机器学习算法能够处理的数据?我们经常接触到的图片有两种,一种是黑白图片(灰度图),另一种是彩色图片。组成图片的最基本单位是像素。1.2 图片三要素组成一张图片特征值是所有的像素值,有三个维度:图片长度、图片宽度、图片通道数。图片的通道数是什么?描述一个像素点,如果是灰度图,那么只需要一个数值来描述它,就是单通道。如果一个像素点,有RGB三种颜色来描原创 2021-06-15 21:54:12 · 1203 阅读 · 1 评论 -
神经网络基础及逻辑回归实现
1. Logistic回归1.1 Logistic回归逻辑回归是一个主要用于二分分类类的算法。那么逻辑回归是给定一个xx, 输出一个该样本属于1对应类别的预测概率\hat{y}=P(y=1|x)y^=P(y=1∣x)。Logistic 回归中使用的参数如下:...原创 2021-06-15 17:50:42 · 1984 阅读 · 0 评论 -
TensorFlow案例实现线性回归
TensorFlow案例实现线性回归一、线性回归原理复习根据数据建立回归模型,w1x1+w2x2+…..+b = y,通过真实值与预测值之间建立误差,使用梯度下降优化得到损失最小对应的权重和偏置。最终确定模型的权重和偏置参数。最后可以用这些参数进行预测。二、案例:实现线性回归的训练1 案例确定假设随机指定100个点,只有一个特征 数据本身的分布为 y = 0.8 * x + 0.7 【目标值:(100,1)】这里将数据分布的规律确定,是为了使我们训练出的参数跟真实的参数(即0...原创 2021-06-14 21:41:56 · 604 阅读 · 2 评论 -
TensorFlow之变量OP
TensorFlow之变量OPTensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类进行操作。变量的特点:存储持久化 可修改值 可指定被训练1 创建变量 tf.Variable(initial_value=None,trainable=True,collections=None,name=None) initial_value:初始化的值 trainable:是否被训练 collections:新变量将添加到列出的图的集合中c原创 2021-05-26 11:22:52 · 316 阅读 · 0 评论 -
TensorFlow之张量
TensorFlow之张量1 张量(Tensor) 【类似于numpy中的数组】TensorFlow 的张量就是一个 n 维数组, 类型为tf.Tensor。Tensor具有以下两个重要的属性type:数据类型 shape:形状(阶)1.1 张量的类型1.2 张量的阶形状有0阶、1阶、2阶….tensor1 = tf.constant(4.0)tensor2 = tf.constant([1, 2, 3, 4])linear_squares = tf.consta.原创 2021-05-25 22:04:31 · 396 阅读 · 1 评论 -
TensorFlow之会话
TensorFlow之会话1.1 会话一个运行TensorFlow operation的类。会话包含以下两种开启方式tf.Session:用于完整的程序当中 【如在pycharm中写代码】 tf.InteractiveSession:用于交互式上下文中的TensorFlow ,例如shell 【如在命令行进行写代码】1 TensorFlow 使用 tf.Session 类来表示客户端程序(通常为 Python 程序,但也提供了使用其他语言的类似接口)与 C++ 运行时之间的连接...原创 2021-05-25 20:50:03 · 802 阅读 · 0 评论 -
TensorFlow之图结构与TensorBoard可视化
TensorFlow之图结构与TensorBoard可视化1.1 什么是图结构图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据。1.2 图相关操作1 默认图通常TensorFlow会默认帮我们创建一张图。查看默认图的两种方法:通过调用tf.get_default_graph()访问 ,要将操作添加到默认图形中,直接创建OP即可。 op、sess都含有graph属性 ,默认都在一张图中import osos.enviro原创 2021-05-25 20:22:11 · 924 阅读 · 0 评论 -
TensorFlow介绍之TF数据流图
TensorFlow介绍之TF数据流图1. TF数据流图1.1案例:TensorFlow实现一个加法运算示例代码:def tensorflow_demo(): """ 通过简单案例来了解tensorflow的基础结构 :return: None """ # 一、原生python实现加法运算 a = 10 b = 20 c = a + b print("原生Python实现加法运算方法1:\n", c) def原创 2021-05-25 17:26:00 · 689 阅读 · 0 评论 -
深度学习介绍2
深度学习介绍21.1 深度学习与机器学习的区别1.1.1 区别1.1.1.1 特征提取方面机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识 深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,通过将数据从一层传递到另一层来构建更复杂的模型。通过大量数据的训练自动得到模型,不需要人工设计特征提取环节。深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言领域原创 2021-05-25 16:17:01 · 228 阅读 · 0 评论