自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(82)
  • 收藏
  • 关注

原创 2025面试内容及其补充

涵盖输入电阻计算、电力系统短路电阻测量、功率方向继电器的最小动作功率、电力设备巡检维护、无功与有功损耗降低方法、灵敏性增大的策略、PWM原理、风力与太阳能发电区别、短路电流计算方法、零序保护方向性、停送电操作步骤、用电问题解决部门、变压器故障类型、断路器与互感器作用、继电器保护设备、电机冷却方式、变电站设计、氧化锌避雷器工作原理、电力系统发展趋势、新趋势面临的挑战、南方电网实践、智能电网理解、新型电力系统与旧型区别以及新能源发展趋势等内容

2025-01-15 18:28:50 149

原创 电力电子技术面试内容整理(精华版)

全面深入地探讨了电力电子技术的关键领域,涵盖了电力电子器件的类型、特征、保护措施,四种基本电力电子变换器的电路拓扑与工作原理,PWM控制技术的原理及实现方法,以及软开关技术的相关知识,为理解和应用电力电子技术提供了详实的理论基础。具体来说,文中详细阐述了电力电子器件如电力二极管、晶闸管等的结构特点与工作状态,分析了整流、逆变、交流调压等变换器的工作原理与参数计算,介绍了PWM控制技术的多种调制方式与应用,还对软开关技术的概念、分类及典型电路工作原理进行了梳理。

2025-01-15 18:15:24 181

原创 高电压技术的面试内容整理(详细版本:57题)

涵盖了高电压技术的关键领域,包括气体放电的物理过程、液体和固体介质的绝缘特性、高压外绝缘的分类与特性、电气设备绝缘试验的方法与原理、电力系统的防雷保护措施,以及内部过电压的产生、影响与限制方法,为理解和应对高电压环境下的电气问题提供了系统的知识框架。通过深入探讨气体放电理论、介质极化与损耗、绝缘子的电气特性、绝缘试验技术、防雷策略以及内部过电压的管理。

2025-01-15 17:50:46 367

原创 高电压技术的面试内容整理(精华版)

涵盖了高电压技术的关键领域,包括气体放电的物理过程、液体和固体介质的绝缘特性、高压外绝缘的分类与特性、电气设备绝缘试验的方法与原理、电力系统的防雷保护措施,以及内部过电压的产生、影响与限制方法,为理解和应对高电压环境下的电气问题提供了系统的知识框架。通过深入探讨气体放电理论、介质极化与损耗、绝缘子的电气特性、绝缘试验技术、防雷策略以及内部过电压的管理。

2025-01-15 16:36:50 126

原创 电路与电机面试内容整理

主要涵盖了电路基础理论,包括基尔霍夫定律、电路谐振、等效电路及时间常数等关键知识点;同时深入讲解了电机与变压器的材料特性、损耗原理以及相关运行特性,为理解电路与电机的工作原理和性能提供了全面的知识框架

2025-01-15 16:07:16 124

原创 南方电网专业面试题(电气类-电力基础:30题)

这些面试题涵盖了电力系统的多个关键领域,包括电力电子技术、继电保护、电力系统分析、高电压技术、电机学等基础学科,以及负荷曲线、电能传输方式、电压调节、交直流输电特点、电气主接线形式、标么值应用、额定电压选择、变压器并列运行条件、中性点运行方式、架空线设计、系统接线方式、正常运行条件、串联补偿、综合负荷定义、功率分布、备用容量分类、短路危害分析、有载调压变压器应用、避雷设备功能、变压器接线方式、电流接线优缺点、主要参数、集肤效应等实际应用和技术细节。

2025-01-15 15:51:52 213

原创 南方电网专业面试题(电气类-电力基础)(目录)

[155] 什么是电力系统分析? [156] 什么是高电压技术? [157] 什么是电机学? [158] 电力系统常用有几种负荷曲线和分别的作用。 [159] 说一说你知道的电能传输有哪几种方式?

2025-01-15 15:51:38 204

原创 南方电网专业面试题(电气类-电力系统分析)(目录)

南方电网专业面试题(电气类-电力系统继电保护)[90] *什么是电力系统?电力系统包括哪些组成部分?发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统。由发电厂、变电站、送电线路、供配电所和用电等环节组成的电能生产与消费系统。

2025-01-15 15:43:26 1101

原创 南方电网专业面试题(电气类-继电保护)(目录)

南方电网专业面试题(电气类-继电保护)(目录)这些面试题围绕继电保护的基本概念、工作原理、分类、性能要求,以及变压器、断路器、母线保护、自动重合闸等电力系统关键设备的保护机制和操作原则展开,旨在评估应聘者对电力系统保护和控制策略的深入理解和实际应用能力。

2025-01-15 15:37:00 1002

原创 南方电网专业面试题(电气类-电力系统分析:60题)

南方电网专业面试题(电气类-电力系统继电保护)这些面试题全面覆盖了电力系统的基本概念、组成、运行要求、电压和频率调节、电能质量、潮流计算、稳定性分析、短路电流计算、接地类型、过电压种类以及发电机励磁等关键知识点,旨在评估应聘者对电力系统理论和实际操作的深入理解。

2025-01-15 15:31:12 233

原创 南方电网专业面试题(电气类-继电保护:89题)

南方电网专业面试题(电气类-电力系统继电保护)这些面试题围绕继电保护的基本概念、工作原理、分类、性能要求,以及变压器、断路器、母线保护、自动重合闸等电力系统关键设备的保护机制和操作原则展开,旨在评估应聘者对电力系统保护和控制策略的深入理解和实际应用能力。

2025-01-15 15:16:44 184

原创 南方电网面试常见综合问题

南方电网常见的面试问题(非专业问题)。

2025-01-14 19:52:56 307

原创 手写相关代码

【代码】手写IOU代码。

2024-01-21 16:41:35 194 1

原创 459. 重复的子字符串

检查是否可以通过由它的一个子串重复多次构成。给定一个非空的字符串。

2023-10-24 21:30:11 221

原创 28. 找出字符串中第一个匹配项的下标

字符串的第一个匹配项的下标(下标从 0 开始)。暴力解法,其他方法,整不会了。

2023-10-24 18:03:35 211

原创 182. 动态口令

某公司门禁密码使用动态口令技术。请返回更新后的密码字符串。

2023-10-24 15:24:35 231

原创 151. 反转字符串中的单词

中可能会存在前导空格、尾随空格或者单词间的多个空格。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。中使用至少一个空格将字符串中的。之间用单个空格连接的结果字符串。是由非空格字符组成的字符串。

2023-10-24 11:35:39 80

原创 122. 路径加密

中的分隔符替换为"20%",请返回加密后的字符串。现需将路径加密,加密方法为将。假定一段路径记作字符串。

2023-10-23 21:45:32 212

原创 541. 反转字符串 II

其实在遍历字符串的过程中,只要让 i += (2 * k),i 每次移动 2 * k 就可以了,然后判断是否需要有反转的区间。,从字符串开头算起,每计数至。

2023-10-23 21:18:18 56

原创 344. 反转字符串

编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组。、使用 O(1) 的额外空间解决这一问题。不要给另外的数组分配额外的空间,你必须。

2023-10-23 21:01:08 55

原创 33. 请解释一下你对卷积神经网络中卷积层、池化层和全连接层的理解

卷积层包括一组可学习的卷积核(或滤波器),它们在输入图像上滑动并执行卷积操作,从而生成特征图。卷积层的作用是提取图像的局部特征,保留空间结构信息,并对图像进行平移不变性的学习。常见的池化操作包括最大池化和平均池化,它们分别通过提取区域中的最大值或平均值来减少特征图的尺寸。池化层的作用是减少计算量,同时使特征对于平移具有一定的不变性。全连接层的每个神经元都与前一层中的所有神经元相连接,通过学习权重来实现对特征的组合和转换。在图像分类任务中,全连接层通常用于最终的分类决策。卷积层是CNN中的核心组件,

2023-10-23 15:50:04 447

原创 32. PyTorch相关

PyTorch中的自动求导(Autograd)是一种用于动态计算梯度的机制,它能够自动地计算张量的梯度,并且对于任意的计算图,都可以实现自动的反向传播。PyTorch的自动微分(Autograd)机制是PyTorch中的一个重要特性,它允许用户在神经网络中轻松地进行反向传播,计算参数的梯度,并用于参数更新。TensorFlow: TensorFlow在生产环境中有更强大的支持,具有高性能的部署选项,如TensorFlow Serving和TensorFlow Lite,可用于生产化的部署。

2023-10-23 15:33:26 371

原创 226. 翻转二叉树

给你一棵二叉树的根节点。,翻转这棵二叉树,并返回其根节点。

2023-10-21 21:11:00 61

原创 请描述一下您对深度学习模型训练的流程和步骤的理解,包括数据预处理、模型选择、超参数调优等。

超参数是指在模型训练过程中需要手动设定的参数,例如学习率、正则化项系数、批量大小等。通过交叉验证、网格搜索、随机搜索等方法来调整超参数,以找到最佳的超参数组合,从而提高模型性能和泛化能力。数据预处理是深度学习模型训练的第一步,包括数据清洗、数据标准化、数据集划分等。常见的预处理操作包括数据清洗、缺失值处理、标准化、归一化、数据增强等,以确保数据的质量和适用性。这涉及根据任务类型、数据集特点和计算资源等因素选择适合的模型结构,例如卷积神经网络(CNN)、循环神经网络(RNN)等。

2023-10-20 16:43:46 257

原创 请解释一下卷积神经网络和循环神经网络的工作原理

卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)是深度学习中两种常见的神经网络架构,它们分别用于处理不同类型的数据和任务。CNN主要用于处理具有网格结构的数据,而RNN适用于处理序列数据,两者都在不同领域的深度学习任务中发挥着重要作用。

2023-10-20 16:20:41 290

原创 1. 请解释一下深度学习中的梯度消失和梯度爆炸问题。

在深层神经网络中,特别是存在多个层的网络中,由于层数增加,梯度在反向传播过程中可能会逐渐变小,甚至趋近于零。这会导致参数更新过小,使得深层网络无法有效学习到有效的特征表示,从而影响模型的性能和收敛速度。在深度学习中,梯度消失(Gradient Vanishing)和梯度爆炸(Gradient Explosion)都是由于反向传播过程中梯度计算引起的数值稳定性问题。反过来,梯度爆炸则是梯度变得非常大,导致权重参数快速增大,甚至超过了计算机所能表示的数值范围。

2023-10-20 15:55:26 186

原创 102. 二叉树的层序遍历

(即逐层地,从左到右访问所有节点)。

2023-10-17 15:57:28 163

原创 31.讲下Attention的原理、优缺点

总的来说,Attention 机制是深度学习领域的一个重要技术,它在处理序列数据和构建序列到序列模型时具有广泛的应用,但在实际应用中需要谨慎选择合适的场景和优化方法以解决其计算复杂性和数据依赖性等问题。注意力机制(Attention)是一种用于深度学习和神经网络中的关键技术,它允许模型在处理序列数据或集合数据时,专注于输入的不同部分,以便更好地捕捉关联和信息。通常,Attention机制包括三个主要步骤。减少处理⾼维输⼊数据的计算负担,结构化的选取输⼊的⼦集,从⽽降低数据的维度。更好的捕捉长距离依赖。

2023-10-13 20:36:19 664

原创 145.二叉树的后序遍历

【代码】145.二叉树的后序遍历。

2023-10-11 22:37:25 58

原创 94. 二叉树的中序遍历

【代码】94. 二叉树的中序遍历。

2023-10-11 22:29:46 56

原创 144. 二叉树的前序遍历

二叉树前序遍历

2023-10-11 22:19:56 53

原创 二叉树遍历

二叉树遍历

2023-10-11 22:05:44 60

原创 30. 网络权重初始化

Xavier初始化根据前一层输入和后一层输出的维度来调整初始化权重的标准差,以确保保持梯度的稳定性。:最简单的方法是使用随机数来初始化权重。:一些深度学习框架(如Kaiming初始化或PyTorch中的nn.init.kaiming_normal)提供了自适应初始化方法,它们根据网络层的激活函数和参数来选择适当的初始化策略。神经网络的权重初始化是深度学习中的重要步骤之一,它可以对训练过程和模型的性能产生显著影响。它使用前一层的输入和后一层的输出维度来初始化权重,以确保权重接近零,并且保持梯度稳定。

2023-10-11 16:07:44 126

原创 29. 卷积层和全连接层的区别

以便将抽取的特征映射转换成最终的输出,通常用于分类任务。在实际的卷积神经网络中,通常会将卷积层与全连接层交替使用,以构建更复杂的模型,如卷积神经网络(CNN)或深度神经网络(DNN)。

2023-10-11 15:57:56 944

原创 28. 在卷积神经网络中,各种数据的channel是指什么意思?

在CNN的卷积层中,卷积核(filter)与输入数据进行卷积操作。每个卷积核都包含了一些权重参数,用于检测输入数据的特征。卷积层通常有多个卷积核,每个卷积核生成一个输出通道。这些输出通道可以看作是不同特征或特征图,每个特征图捕获输入数据的不同特征信息。:在卷积神经网络中,输入通常是图像。因此,对于彩色图像,输入通道的数量通常为3。:在CNN中,池化层通常用于减小特征图的空间尺寸,降低计算复杂度。池化操作通常应用于每个特征图的不同通道,以减小特征图的深度(通道数)。每个卷积层中卷积核的数量。

2023-10-11 15:39:18 1284

原创 27. 感受野的理解,如何计算?

感受野(Receptive Field)是卷积神经网络(CNN)中的一个重要概念,用于描述每个神经元(或特征图上的像素)对输入数据的影响范围。感受野的大小取决于神经网络的结构,包括卷积层、池化层和步幅(stride)等参数。卷积层的感受野大小取决于卷积核的大小、步幅(stride)以及之前层的感受野大小。每一层的感受野大小都会随着网络的深度逐渐增加,因为每一层都考虑了前一层的感受野以及自身的卷积操作。通常,步幅和池化窗口的大小相同,例如,如果池化窗口大小是 2x2,则步幅通常也是 2。

2023-10-10 21:43:26 310

原创 26. pooling如何反向传播

反向传播的梯度计算通常从需要更新参数的层开始,并逐渐传播回前面的层。通过在局部区域内选择最大值(最大池化)或计算平均值(平均池化),可以将特征图的尺寸减小,同时保留重要信息。通过选择局部区域内的最大值或平均值,模型能够更关注图像中的主要特征,而不受微小位置变化的影响。在前向传播中,池化操作(最大池化或平均池化)通过在局部区域内选择最大值或计算平均值来减小特征图的尺寸。例如,对于目标检测任务,物体的准确位置信息是必要的,因此过多的池化层可能不合适。计算模型的损失函数,通常是在输出层进行的操作。

2023-10-10 20:56:20 287

原创 25. padding的作⽤和缺点,如何反向传播?

Padding是卷积神经网络(CNN)中的一个重要概念,它用于控制卷积操作在输入特征图上的滑动方式。主要作用是在卷积操作中保持特征图的尺寸不变。通过在输入特征图的边缘添加一些额外的值(通常是0),可以确保输出特征图的尺寸与输入特征图相同。在卷积操作中,如果没有进行padding,卷积核只能在输入特征图的内部滑动,这可能导致边缘的信息丢失。通过padding,可以确保卷积核能够完全覆盖输入特征图的边缘像素,从而防止信息丢失。padding的数量可以控制输出特征图的尺寸。

2023-10-10 18:04:03 245

原创 24. 为什么要⽤1*1卷积

例如,在图像分类任务中,可以使用1x1卷积来学习通道之间的权重,以便强调重要的特征。:1x1卷积可以用于调整张量的通道数,从而增加或减少特征图的深度。通过降维,可以减少计算负担,而通过升维,可以增加特征图的表达能力。1x1卷积通常与2x2或3x3等更大的卷积核结合使用,构建瓶颈结构。这种结构可以在减少参数数量的同时,保持较大的感受野,有助于提高模型的性能。与大尺寸的卷积核相比,1x1卷积保留了输入特征图的空间分辨率,因此在一些任务中,它可以更好地保持位置信息,这对于像分割和定位等任务非常重要。

2023-10-10 16:37:02 226

原创 INNFOS机械臂运动学模型和求逆解

1 建模方式:2 解析解:

2023-10-10 16:13:09 300

电力行业面试指南-南方电网应聘者的全面解析(非专业类问题)

内容概要:本文详细列出了针对南方电网招聘的典型面试问题及其对应答案,涵盖自我介绍、家庭情况、职业规划等多个方面。文中通过问答形式,解答了一些应聘时常遇到的问题,提供了实用性的准备建议和策略。此外,还包括了应聘者的自我评估、兴趣、优点与劣势等方面的内容,展现了应聘者全面的个人形象及职业发展潜力。 适用于计划应聘南方电网以及其他电力行业企业的求职者,尤其适合应届毕业生及转行人士。 该指南可以帮助面试者提前做好充分的准备工作,提升面试表现和成功率。无论是在内容准备还是在心理调节上,都能够起到较好的指导作用,使面试者更好地理解和适应电网企业文化及工作要求。面试者可以通过这篇指南了解自己需要具备哪些能力,并针对性进行提升,为未来的电网职业生涯做好充分准备。 其他说明:文档内容还包含了一些软技能方面的内容,如如何应对职场冲突、团队协作技巧、职业发展规划等,旨在全方位提高求职者的综合素质。

2025-01-14

基于Python的理论与实现(人工智能、深度学习)

深度学习入门:基于Python的理论与实现 pdf+代码

2023-10-24

Intel RealSenserm Depth Camera D435i刷固件作业流程,400系列动态标定校准资料

Intel RealSenserm Depth Camera D435i刷固件作业流程,400系列动态标定校准资料

2023-10-24

算法工程师简历模板三份(word格式)

简洁的算法简历模板。 包括了各个部分的注释。

2023-10-23

RealSense 动态校准说明书

RealSense 动态校准中文说明、教程

2023-10-23

RealSense D435i 深度相机捕获数据集程序-python

RealSense D435i 深度相机捕获数据集使用方法 python语言 包括: RGB图 Depth图 vedio数据

2023-10-23

YOLO系列的综述文章分享

官方经典的YOLOv1-v8 YOLO的改进:PP-YOLO,YOLOX,YOLOR,DAMO-YOLO,YOLO with Transformers

2023-10-23

深度学习小白入门资料分享1

pdf书籍+PPT+习题解答:较全面地介绍了神经网络、机器学习和深度学习的基本概念、模型和方法,同时也涉及了深度学习中许多最新进展。书后还提供了相关数学分支的简要介绍,以供读者需要时参考。

2023-10-23

个人下载和整理的卷积神经网络论文合集

经典卷积神经网络合集: YOLO VGG、ResNet、ShuffleNet等等 Transformer Inception

2023-10-23

Intel RealSense 动态标定校准的官方棋盘格 Dynamic Calibration Print Target

Intel RealSense Dynamic Calibration Print Target With Fixed Width (10 mm) Bars 动态标定校准的官方棋盘格

2023-10-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除