1x1卷积(也称为点卷积或逐点卷积)在深度学习中有多种用途,尽管它的卷积核大小很小,但它具有一些重要的功能和应用:
-
降维和升维:1x1卷积可以用于调整张量的通道数,从而增加或减少特征图的深度。这对于在神经网络中控制参数数量和计算复杂性非常有用。通过降维,可以减少计算负担,而通过升维,可以增加特征图的表达能力。
-
特征交互:1x1卷积可以用于在特征图的不同通道之间进行交互。这有助于捕捉不同通道之间的关联性,从而提高网络的表现能力。例如,在图像分类任务中,可以使用1x1卷积来学习通道之间的权重,以便强调重要的特征。
-
瓶颈结构:1x1卷积通常与2x2或3x3等更大的卷积核结合使用,构建瓶颈结构。这种结构可以在减少参数数量的同时,保持较大的感受野,有助于提高模型的性能。
-
空间信息保持:与大尺寸的卷积核相比,1x1卷积保留了输入特征图的空间分辨率,因此在一些任务中,它可以更好地保持位置信息,这对于像分割和定位等任务非常重要。
-
维度变换:1x1卷积也可用于将张量的形状从一个形状变换为另一个形状,这在某些网络结构中很有用
增加⽹络的深度(加⼊⾮线性)、升维或者是降维、跨通道信息交互(channal 的变换)