【类】二维dp:动态规划背包问题

本文介绍了使用二维动态规划解决背包问题的方法,重点讲解了dp[n][m]的状态含义及状态转移方程,通过初始化最上一行和最左一列,然后用双重循环填充dp数组,从而找出背包能容纳的最大价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

**

dp[n][m]含义就是:当有n种物品时且背包有m容量时,这个背包能产生的最大价值

**
状态转换关系是:dp[n][m]=dp[n-1][m],dp[n-1][m-新物品重量]
意思就是,当面对新来的一个物品时,求这个情况下,背包能产生的最大价值 相当于求下面两个情况背包能产生的最大价值:
1.无视这个新物品,不放入背包
2.一定要把这个新物品放入背包

思路:
1.首先填满最上面一排和最左边一列
在这里插入图片描述

接着搞个双重循环填满dp
在这里插入图片描述
最后返回的是这个值:
在这里插入图片描述

public static int knapsack(int[] w,int[] v,int c){
        int stuffs=w.length;
        int [][]dp=new int[stuffs][c+1];
        //先初始化最上面一排和最边一列
        //最上面一排,当只能用第一个stuff的时候,遍历capacity从0-c的所有可能
        for (int i = 0; i <=c; i++) {
            if (w[0]>i){
                dp[0][i]=0;
            }else {
                dp[0][i]=v[0];
            }
        }
        //最左边一列,当capacity=0时,装不了任何东西,所以最左边一列都是0
        for (int i = 0; i <stuffs ; i++) {
            dp[i][0]=0;
        }
        for (int i = 1; i <stuffs ; i++) {
            for (int j = 1; j <=c ; j++) {
                //比较:不拿新的stuff和一定要拿新的stuff
                
                dp[i][j]=dp[i-1][j];
                //当现在的容量能放下新物品时,比较两种情况,求出最大值:
                if (j>=w[i]){
                    dp[i][j]=Math.max(dp[i][j],dp[i-1][j-w[i]]+v[i]);
                }
            }
        }
        return dp[stuffs-1][c];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值