
Raspberry Pi 5学习专栏
文章平均质量分 73
xm一点不soso
小世界里干杯
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Raspberry Pi 5 树莓派5--初体验(硬件安装、搭建系统环境)
树莓派(Raspberry Pi)是一款基于ARM架构的微型计算机,最初为编程教育设计,具备多媒体处理、文档编辑等多种功能,支持4K视频播放。树莓派经过多年迭代,2023年发布了最新的Raspberry Pi 5,配备2.4GHz四核处理器,CPU性能提升2-3倍,图形处理和相机支持也有显著增强。其USB和SD卡带宽均提升,并引入PCI Express 2.0接口。使用树莓派时,可通过烧录系统至SD卡,再通过远程连接或外接显示器操作,完成系统配置与设置。原创 2024-09-26 14:10:08 · 7224 阅读 · 0 评论 -
树莓派--VNC远程访问
开启VNC:applications menu → Preferences → Raspberry Pi Configuration。获取树莓派主板IP地址后,可以使用RealVNC Viewer软件进行远程登录。账号和密码是自行设置的。进行VNC远程登录前,需要在树莓派系统设置或使用raspi-config工具开启VNC功能。系统连接WiFi后,将鼠标停留在WiFi图标上,就可以看到对应的IP地址。启用VNC功能后,就可以根据树莓派的IP进行远程控制。远程登录成功后会显示树莓派系统桌面!原创 2024-10-16 10:27:59 · 1455 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-9.OpenCV实现汽车检测
该项目使用的汽车检测使用的也是 haar 模型。这是一种基于机器学习的汽车检测算法。它使用了 Haar 特征来检测汽车,可以在图像中快速检测到汽车并输出其位置。采用该方法检测速度较快,但准确率略低。原创 2024-10-09 17:00:00 · 560 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-10.OpenCV进行车牌检测
本项目使用 esseract、OpenCV和Python探索光学字符识别(OCR)的神奇世界,本项目将带你了解最受欢迎的OCR引擎 Tesseract 背后的技术,以及如何用 Pytesseract 和 OpenCV实现字符识别。 从图像中检测字符的技术称为 OCR(光学字符识别),使用 Pytesseract 库很容易实现。2.2 车牌识别相关操作 1.车牌检测:第一步是从汽车上检测车牌所在位置。使用OpenCV中矩形的轮廓检测来寻找车牌,如果我们知道车牌的确切尺原创 2024-10-09 20:00:00 · 1356 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-17.YOLOv8目标检测-安全帽检测
YOLOv8是Ultralytics公司2023年推出的Yolo系列目标检测算法,可以用于图像分类、物体检测和实例分割等任务。YOLOv8作为YOLO系列算法的最新成员,在损失函数、Anchor机制、样本分配策略等方面进行了全面优化和创新。这些改进不仅提高了模型的检测精度和鲁棒性,还简化了训练流程并提升了模型的可扩展性。建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性。其核心思想是将目标检测问题转化为一个回归问题,通过一次前向传播过程即可完成目标的位置和类别预测。原创 2024-10-12 12:25:52 · 1719 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-16.YOLOv5目标检测
YOLOv5是UItralyties开发的一种目标检测算法。它是YOLO(You Only Look Once)系列实时目标检测模型的演变。YOL0v5 建立在早期版本(如 YOLOv4 和 YOLOv3)的基础上,在准确性和速度方面进行了多项改进。YOLOv5快速且易于使用,它基于PyTorch框架,该框架拥有比YOLOv4 Darknet更大的社区。安装简单明了,YOLOv5是YOLO系列的一个延伸,可以看作是基于YOLOv3、YOLOv4的改进。原创 2024-10-11 19:00:00 · 817 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-15.SSD Mobilenet V3目标检测
Mobilenet 是一种专为移动和嵌入式视觉应用而设计的卷积神经网络。它们不使用标准的卷积层,而是基于使用深度可分离卷积的简化架构,使用这种架构,我们可以为移动和嵌入式设备(例如:树莓派)构建低延迟的轻量级深度神经网络。 SSD(single Shot Multi Box Detection)是一种针对多种类别的单次深度神经网络,同时集中了 YOLO 的回归思想和 Faster RCNN 算法的 Anchor 机制,从一个层面来说,采用回归思想可以降低检测过程中卷积计算的复杂度,使得算法时效原创 2024-10-11 15:30:00 · 1297 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-14.基于OpenCV二维码识别
二维码又称二维条码,常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更多的数据类型。二维条码/二维码(2-dimensional bar code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形,在代码编制上巧妙地利用构成计算机内部逻辑基础的 “0”、“1”比特流的概念。原创 2024-10-11 08:00:00 · 804 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-13.OpenCV摄像头云台人脸追踪
本项目内容和前面学习的云台追踪物体是一样的原理,只是这里把追踪物体修改成追踪人脸,在前面的内容中,我们已经学习了二维云台的物体追踪,理解了二维云台对物体追踪的PID控制模型,在本案例中,把物体追踪直接换成前面所学习的Haar分类器进行OpenCV二维云台人脸追踪,只需要把物体识别的代码换成 Haar 分类器识别人脸即可。原创 2024-10-10 15:00:00 · 756 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-12.OpenCV摄像头云台物体追踪
常见的闭环控制算法是所谓的PID及比例-积分-微分控制器。PID通常用于自动化,使得机械装置可以快速且准确地达到最佳值(由反馈传感器读取)。它们用于制造,自动化过程控制,机器人等。PID 控制器计算误差项(所需设定点和传感器读数之间的差值)并且具有补偿误差的目标。PID 计算输出一个值,该值用作“过程”的输入(机电过程,而不是计算机科学/软件工程师类型认为的“计算机过程”)。传感器输出称为“过程变量”,并作为等式的输入。在整个反馈回路中,捕获定时并将其输入到等式中。原创 2024-10-10 11:30:00 · 2853 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-11.OpenCV定位物体的实时位置
本项目通过PCA9685舵机控制模块控制二自由度舵机云台固定在零点位置,然后通OpenCV检测到黄色小熊,找到中心位置并打印出中心位置的坐标,通过双色LED灯进行指示是否检测到目标,本项目为后面二维云台追踪物体和追踪人脸提供基础,云台追踪物体就必须知道物体的中心坐标和图像坐标的相对值,然后才能控制舵机云台进行水平方问(x方向)和垂直方向(y方向)进行修正。原创 2024-10-10 08:30:00 · 816 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-8.OpenCV实现行人检测
该项目使用的行人检测使用的也是 haar 模型。这是一种基于机器学习的行人检测算法。它使用了 Haar 特征来检测行人,可以在图像中快速检测到行人并输出其位置。采用该方法检测速度较快,但准确率略低。原创 2024-10-09 15:45:00 · 441 阅读 · 0 评论 -
树莓派学前知识--使用Jupyter Lab软件进行Python开发
Jupyter Lab作为一种基于web的集成开发环境,可以使用它编写notebook、操作终端、编辑markdown文本、打开交互模式、查看csv文件及图片等功能。我们可以把Jupyter Lab 当作一种究极进化版的Jupyter Notebook。官方网站• 交互模式:Python交互式模式可以直接输入代码,然后执行,并立刻得到结果,因此Python交互模式主要是为了调试Python代码用的。原创 2024-09-27 16:49:32 · 1890 阅读 · 0 评论 -
树莓派使用初遇困难--奇招来啦
在树莓派可以联网的情况下,以从官网安装QQ Linux最新版为例(其他软件安装同样适用)。第一步:打开树莓派浏览器,用百度搜索“QQLinux最新版”,选择ARM下载deb文件。其中 /home/pai/Downloads/ 为安装包路径,QQ.deb为安装包名。第二步:打开Download文件夹可以看到下载好的deb文件。第四步:安装完成后,在Internet中打开QQ即可登录。第三步:打开终端先后输入以下两个指令。原创 2024-09-26 17:53:27 · 885 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-1.安装和使用Matplotlib、Pyplot和Numpy
在进入人工智能之后,我们会发现人工智能与数据的关系非常密切,而数据则需要通过一些简单实用的库来进行庞大的数据处理,而且庞大的数据基本上以数组或者矩阵的形式,所以我们需要学习 Numpy、Matplotlib 等 Pyplot 库。Matplotlib 是 Python 的绘图库。它可与 NumPy一起使用,提供了一种有效的 MatLab开源替代方案。它也可以和图形工具包一起使用,如PyQt和wxPython。原创 2024-09-28 17:09:31 · 892 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-2.在OpenCV 中运行CSI 摄像头
树莓派操作CSI摄像头,推荐使用官方开发的Picamera2库,Picamera2是一个Python库,可以方便地操作 Raspberry Pi 的摄像头,而不适用于其他摄像头。原创 2024-09-29 15:48:06 · 1732 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-3.OpenCV 读取写入和显示图像
在计算机视觉和图像处理领域,读取和显示图像是最基础且常见的操作之一,OpenCV作为一个强大的计算机视觉库,提供了丰富的功能来处理图像数据。读取、显示和写入图像是图像处理和计算机视觉的基础,即使裁剪、调整大小、旋转或应用不同的过滤器来处理图像,您也需要首先读取图像。因此,掌握这些基本操作很重要。原创 2024-10-08 09:17:56 · 745 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-4.OpenCV读取、写入和显示视频
视频是由一张一张图片组成的,所以读取视频就相当于读取很多张图片,然后将其连起来cv2.VideoCapture可以捕获摄像头,但是针对树莓派的CSI摄像头调用方式采用了之前介绍的Picamera2 库,所以在调用的时候是有区别的,但是如果是事先准备的视频或者是 USB 摄像头使用cv2.VideoCapture初始化设备即可,如果是视频文件,直接写好视频路径就好。原创 2024-10-08 14:49:41 · 880 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-5.OpenCV绘画函数的使用
OpenCV作为一款功能强大的计算机视觉库,被广泛地应用于图像处理和计算机视觉领域。除了在机器视觉和人工智能领域有者广泛的应用,OpenCV 还能够媲美艺术家的创造力,通过其强大的绘图函数,绘制出令人叹为观止的艺术画作。OpenCV中的绘图函数为我们提供了丰富多样的工具,能够绘制出各种形状和效果。例如,我们可以使用线条函数画出细腻的轮廓,使用填充函数给图像增添色彩和渐变效果,使用文本函数添加文字说明等等。这些绘图函数结合起来,让我们能够在图像中创造出各种想象力丰富的人物形象。原创 2024-10-08 17:30:51 · 1038 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-6.OpenCV 进行颜色检测
在后续章节中将尝试完成的一件事是检测和跟踪特定颜色的对象。为此,必须对OpenCV 如何解释颜色有更多的了解。通常,相机将在RGB颜色模式下工作,可以将其理解可以由红色,绿色和蓝色三种颜色的灯光构成的所有可能的颜色。我们将在这里使用BGR(蓝色,绿色,红色)代替。对于 BGR,像素由蓝色,绿色和红色这三个参数表示。每个参数通常具有0到255之间的值(或十六进制的0到FF)。例如,计算机屏幕上的纯蓝色像素的B值为255,G值为0,R值为0。原创 2024-10-09 08:30:00 · 2504 阅读 · 0 评论 -
树莓派应用--AI项目实战篇来啦-7.OpenCV脸部和眼睛检测
在深度学习时代,人脸识别一般是利用卷积神经网络进行监督式学习,也就是通过让算法(神经网络)自己去发现规律的方式,创造出有用的卷积核,然后利用其进行寻找图片和视频中的人脸,而在这之前,人们需要的则是自己去设计算法,寻找人脸。不过后来人们发明了一种近似于深度学习思路的人脸寻找算法,那就是 haar 算法。这个算法简单点来说,就是计算一个区域内不同像素之间的灰度差别,来判断是不是人脸,原理就是一种有规律的图像,比如一个物体,无论光线明亮与否,其不同区域之间的像素差总是有一定规律的。原创 2024-10-09 11:07:06 · 1349 阅读 · 0 评论