神经网络|(十三)概率论基础知识-贝叶斯公式和全概率公式

【1】引言

前序学习进程中,已经对贝叶斯公式全概率公式做了简单学习,也对相关的先验概率、似然概率和后验概率基本概念做了探究。
今天就在先前学习的基础上再做一下加深,使得理解更加透彻。

【2】贝叶斯公式

【2.1】联合概率

联合概率,事件A和事件B同时发生的概率,可以记作:
P ( A ∩ B ) P(A\cap B) P(AB)

【2.2】条件概率

条件概率,一个事件已经发生的前提下,另一个事件发生的概率。
事件A发生的前提下,事件B发生的概率记作: P ( B ∣ A ) P(B|A) P(BA)
事件B发生的前提下,事件A发生的概率记作: P ( A ∣ B ) P(A|B) P(AB)
条件概率中蕴含联合概率,因为一个事件发生,另一个事件也发生,那这两个事件在表象上是同时发生,所以满足条件概率的定义,具体的计算公式为:
当事件A先发生, P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P(B|A)=\frac{P(A \cap B)}{P(A)} P(BA)=P(A)P(AB)
当事件B先发生, P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

【2.3】贝叶斯公式

从条件概率推导联合概率,有:
P ( B ∣ A ) ⋅ P ( A ) = P ( A ∩ B ) = P ( A ∣ B ) ⋅ P ( B ) P(B|A)\cdot P(A)=P(A\cap B)=P(A|B) \cdot P(B) P(BA)P(A)=P(AB)=P(AB)P(B)
根据这个公式可以转换出另外两个公式:
P ( B ∣ A ) = P ( A ∣ B ) ⋅ P ( B ) P ( A ) P(B|A)=\frac{P(A|B)\cdot{P(B)}}{P(A)} P(BA)=P(A)P(AB)P(B)
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B)=\frac{P(B|A)\cdot{P(A)}}{P(B)} P(AB)=P(B)P(BA)P(A)
这两个就是贝叶斯公式。

【2.4】全概率公式

在先前的学习中,其实提及贝叶斯公式会涉及一连串互斥且互补的时间,本质上这是一个全概率问题。
多个事件互斥且互补时,它们一定满足:
P ( A ∣ A ) = 1 = ∑ i = 1 n P ( A i ∣ A ) P(A|A)=1=\sum_{i=1}^{n}P(A_{i}|A) P(AA)=1=i=1nP(AiA)
i ≠ j , P ( A i ∩ A j ) = 0 i≠j,P(A_{i}\cap A_{j})=0 i=j,P(AiAj)=0
所以全概率公式可以进一步改写,以事件A先发生讨论,此时有

P ( B ∣ A ) = P ( A ∣ B ) ⋅ P ( B ) P ( A ) = ∑ i = 1 n P ( A i ∣ B ) P ( B ) ∑ i = 1 n P ( A i ) P(B|A)=\frac{P(A|B)\cdot{P(B)}}{P(A)}=\\ \frac{\sum_{i=1}^{n}P(A_{i}|B)P(B)}{\sum_{i=1}^{n}P(A_{i})} P(BA)=P(A)P(AB)P(B)=i=1nP(Ai)i=1nP(AiB)P(B)

【2.5】讨论

贝叶斯公式提供了更为广阔的视角,实际上无论哪个事件先发生,都可以计算 P ( A ∣ B ) P(A|B) P(AB) P ( B ∣ A ) P(B|A) P(BA),计算的根本依据就是全概率公式。
更多时候,学习里面的困惑在于本来在学习A先发生,B后发生,这样很好计算 P ( B ∣ A ) P(B|A) P(BA),突然问B发生时A发生的概率 P ( A ∣ B ) P(A|B) P(AB),这时候就一定要灵活使用 P ( B ∣ A ) ⋅ P ( A ) = P ( A ∩ B ) = P ( A ∣ B ) ⋅ P ( B ) P(B|A)\cdot P(A)=P(A\cap B)=P(A|B) \cdot P(B) P(BA)P(A)=P(AB)=P(AB)P(B)来转换贝叶斯公式。

【3】总结

学习了贝叶斯公式和全概率公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值