自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(56)
  • 收藏
  • 关注

原创 疏老师-python训练营-Day53 对抗生成网络

然后我随机初始化这个造假币的a,我每次给他随机的输入,他会生成不同的假币,每一张假币都会让警察来判断,警察能够分别出真假,如果说你是假的,那么造假币的就要更新参数,如果是真的,那么造假币的参数就不用更新,警察要更新参数。为了让警察能分辨真币,我需要给他看真币的样子,也就是先训练警察知道什么是真币,但是只给他一个真币他也没法训练,我中间得掺杂一些无意义的噪声图片,无意义的肯定不可能是真币,所以他大概可以训练好。那么如何评价好这个分布情况呢?判别器的损失定义在先,生成器的损失定义基于判别器的反馈。

2025-08-22 23:47:35 498

原创 疏老师-python训练营-Day52神经网络调参指南

知识点回顾:随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得作业:对于day'41的简单cnn,看看是否可以借助调参指南进一步提高精度。知识点的学习:之前有同学问我之前对于权重的可视化有什么意义,我们现在来引入这个概念,从权重的初始化到权重的可视化随着学习的越来越深入,有一些基础的概念我们往后就绕不过去了,还是得把基础打牢,介绍下这些概念。

2025-08-21 23:54:40 383

原创 疏老师-python训练营-day51复习日+退款开始

今天我把day50的内容好好复习了一遍,看了李沐大神十四分钟的课(主要了解一下残差概念),代码部分没有看(咱文档代码就够了)。沐神讲的很棒,同时又通过ai去了解了每一行代码的含义和逻辑,最后时间紧,先到这了。我还要复习TensorBoard,反正我打卡结束了,那就晚点再编辑吧。

2025-08-20 23:57:24 204

原创 疏老师-python训练营-Day50预训练模型+CBAM注意力

知识点回顾:resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调ps:今日的代码训练时长较长,3080ti大概需要40min的训练时长作业:好好理解下resnet18的模型结构尝试对vgg16+cbam进行微调策略。

2025-08-19 23:49:33 808

原创 疏老师-python训练营-Day49 CBAM注意力

cbam注意力之前我们介绍了se通道注意力,我们说所有的模块本质上只是对特征进一步提取,今天进一步介绍cbam注意力CBAM 是一种能够集成到任何卷积神经网络架构中的注意力模块。它的核心目标是通过学习的方式,自动获取特征图在通道和空间维度上的重要性,进而对特征图进行自适应调整,增强重要特征,抑制不重要特征,提升模型的特征表达能力和性能。简单来说,它就像是给模型装上了 “智能眼镜”,让模型能够更精准地看到图像中关键的部分。

2025-08-18 23:46:18 952

原创 疏老师-python训练营-Day48

知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可一.知识点的学习。

2025-08-17 23:40:20 683

原创 疏老师-python训练营-Day47 注意力热图可视化

热力图(红色表示高关注,蓝色表示低关注)半透明覆盖在原图上。昨天代码中注意力热图的部分顺移至今天。作业:对比不同卷积层热图可视化的结果。捕获最后一个卷积层(

2025-08-16 23:56:04 249

原创 疏老师-python训练营-Day46通道注意力(SE注意力)

之前复试班强化部分的transformer框架那节课已经介绍过注意力机制的由来,本质从onehot-elmo-selfattention-encoder-bert这就是一条不断提取特征的路。各有各的特点,也可以说由弱到强。其中注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。

2025-08-15 23:52:24 859

原创 疏老师-python训练营-Day45Tensorboard使用介绍

知识点回顾:tensorboard的发展历史和原理tensorboard的常见操作tensorboard在cifar上的实战:MLP和CNN模型效果展示如下,很适合拿去组会汇报撑页数:作业:对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。PS:tensorboard和torch版本存在一定的不兼容性,如果报错请新建环境尝试。

2025-08-14 23:55:28 635

原创 疏老师-python训练营-Day44预训练模型

模型年份提出团队关键创新点层数参数量ImageNet Top-5错误率典型应用场景预训练权重可用性LeNet-51998Yann LeCun等首个CNN架构,卷积层+池化层+全连接层,Sigmoid激活函数7~60KN/A手写数字识别(MNIST)无(历史模型)AlexNet2012Alex Krizhevsky等ReLU激活函数、Dropout、数据增强、GPU训练860M15.3%大规模图像分类PyTorch/TensorFlow官方支持VGGNet。

2025-08-13 23:56:01 318

原创 疏老师-python训练营-Day43复习日补:反向+中间层可视化复习

别以为数字不是增大了吗(96),哪里是原始梯度一半.这是因为这个算式的数学过程。要是不屑grad/2光一个grad,那就。最后一段的代码,我感觉也是非常的模板,那我是不会细读的,知道每一段做什么和流程以后会用就行。以下这段代码我就不去逐行读了因为我感觉非常模板,豆包也这么说。这里有一个F函数,啥意思呢看豆包把。对于下图代码我有一些疑问。终于学习最后一页内容了。

2025-08-13 01:19:57 171

原创 疏老师-python训练营-Day43复习日

我今天不做这个作业了,我要好好地花时间把cnn卷积神经网络流程再学习一遍,再学习hook函数(这些概念不是很好理解),我从8月头开始还要学习matlab的编程和基础的专业知识不能把精力全部投放在深度学习领域上了,所以对于cnn领域学的不好,导致我hook函数也不太理解。而且需要注意,有一个东西叫输出通道,我当时和老师文档里的output_size搞混了,导致我看不懂代码。再学习CNN模型也就是老师的计算机视觉讲义之前,我去看了一个十五分钟左右的视频,很生动对于理解一级棒。对于该段代码,生动的理解一下。

2025-08-12 23:54:24 419

原创 疏老师-python训练营-Day42Grad-CAM与Hook函数

知识点回顾回调函数lambda函数hook函数的模块钩子和张量钩子Grad-CAM的示例作业:理解下今天的代码即可一.知识点的学习在深度学习中,我们经常需要查看或修改模型中间层的输出或梯度。然而,标准的前向传播和反向传播过程通常是一个黑盒,我们很难直接访问中间层的信息。PyTorch 提供了一种强大的工具——hook 函数,它允许我们在不修改模型结构的情况下,获取或修改中间层的信息。

2025-08-11 23:49:20 600

原创 疏老师-python训练营-Day41训练和测试的规范写法

该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。我是看b站视频(不用看特别长的,5分钟-半小时之内的视频就行,了解一下大致原理就行),然后学习老师科研班的cv学习文档,之后就是看老师今天的代码了。可以把全连接层前面的不理解为神经网络的一部分,单纯理解为特征提取器,他们的存在就是帮助模型进行特征提取的。这种学习率调度器的方法相较于之前只有单纯的优化器,是一种超参数的优化方法,它通过调整学习率来优化模型。

2025-08-10 23:35:03 749

原创 疏老师-python训练营-Day40训练和测试的规范写法

测试函数和绘图函数均被封装在了train函数中,但是test和绘图函数在定义train函数之后,这是因为在 Python 中,函数定义的顺序不影响调用,只要在调用前已经完成定义即可。由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。如果打印每一个batchsize的损失和准确率,会看的更加清晰,更加直观。

2025-08-09 21:52:00 669

原创 疏老师-python训练营-Day39图像数据与显存

从这里开始我们进入到了图像数据相关的部分,也是默认你有之前复试班计算机视觉相关的知识,但是一些基础的概念我仍然会提。昨天我们介绍了minist这个经典的手写数据集,作为图像数据,相较于结构化数据(表格数据)他的特点在于他每个样本的的形状并不是(特征数,),而是(宽,高,通道数)# 先继续之前的代码from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具。

2025-08-08 16:50:38 850

原创 疏老师-python训练营-Day38 Dataset和Dataloader类

维度DatasetDataLoader核心职责定义“数据是什么”和“如何获取单个样本”定义“如何批量加载数据”和“加载策略”核心方法(获取单个样本)、__len__(样本总数)无自定义方法,通过参数控制加载逻辑预处理位置在中通过transform执行预处理无预处理逻辑,依赖Dataset返回的预处理后数据并行处理无(仅单样本处理)支持多进程加载(典型参数root(数据路径)、transform(预处理)batch_sizeshuffle核心结论Dataset类:定义数据的内容和格式。

2025-08-07 23:30:06 928

原创 疏老师-python训练营-Day37早停策略和模型权重的保存

知识点回顾:过拟合的判断:测试集和训练集同步打印指标模型的保存和加载仅保存权重保存权重和模型保存全部信息checkpoint,还包含训练状态早停策略作业:对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略一.先学习今天的知识点。

2025-08-06 23:57:19 651

原创 疏老师-python训练营-Day36复习日+昨日笔记补充

在这一步,如果你直接用老师的鸢尾花数据集写的步骤会报错,因为y_train和y_test是series不是numpy,要转换一下。对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。这里我训练轮次是20005不可以被1000整除,因为我要凸显下图这段代码的作用。仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。看结果图可知,我人算的和它一样,总数都是342。通过下图的shape查一下输入层输入的是几。隐藏层要改吗,不用,豆包老师这么说。一.先提交复习日作业。

2025-08-05 18:00:07 286

原创 疏老师-python训练营-Day35模型可视化推理

知识点回顾:三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化进度条功能:手动和自动写法,让打印结果更加美观推理的写法:评估模式作业:调整模型定义时的超参数,对比下效果。一.知识点学习。

2025-08-04 23:40:13 728

原创 疏老师-python训练营-Day34补GPU训练及类的call方法

补充一下call的理解,主要是对于一.先看知识点。

2025-08-04 00:58:14 606

原创 疏老师-python训练营-Day34GPU训练及类的call方法

@浙大疏锦行知识点回归:ps:在训练过程中可以在命令行输入nvida-smi查看显存占用情况作业复习今天的内容,在巩固下代码。思考下为什么会出现这个问题。一.知识点学习首先回顾下昨天的内容,我在训练开始和结束增加了time来查看运行时长对于下图知识点我忘记了,今天重新掌握一下。上述是在cpu的情况下训练,(即使安装了cuda,但是没有使用cuda),我们借这个机会简单介绍下cpu的性能差异。CPU 型号: 12th Gen Intel(R) Core(TM) i9-12900KF核心数: 1

2025-08-03 23:43:53 900

原创 疏老师-python训练营-Day33 MLP神经网络的训练

定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。定义层数+定义前向传播顺序class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(4, 10) # 输入层到隐藏层。

2025-08-02 21:36:48 991 1

原创 疏老师-python训练营-Day32阅读文档

知识点回顾:官方文档的检索方式:github和官网官方文档的阅读和使用:要求安装的包和文档为同一个版本类的关注点:实例化所需要的参数普通方法所需要的参数普通方法的返回值绘图的理解:对底层库的调用作业:参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。

2025-08-01 23:40:08 861

原创 疏老师-python训练营-Day31文件的规范拆分和写法

今日的示例代码包含2个部分notebook文件夹内的ipynb文件,介绍下今天的思路项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。红框后面有一堆的的英文,不用管。翻到最后,就看下面2张图。1.先学知识点,主要文件中的那个ipynb文件。

2025-07-31 22:05:00 609

原创 疏老师-python训练营-Day30模块和库的导入

模块(Module)本质:以.py结尾的单个文件,包含Python代码(函数、类、变量等)。作用:将代码拆分到不同文件中,避免代码冗余,方便复用和维护。包(Package)在python里,包就是库本质有层次的文件目录结构(即文件夹),用于组织多个模块和子包。核心特征:包的根目录下必须包含一个文件(可以为空),用于标识该目录是一个包。

2025-07-30 21:12:17 1041

原创 疏老师-python训练营-Day29复习日

知识点回顾类的装饰器装饰器思想的进一步理解:外部修改、动态类方法的定义:内部定义和外部定义作业:复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等,未来再过几个专题部分我们即将开启深度学习部分。一.先学知识点。

2025-07-29 23:53:57 919

原创 疏老师-python训练营-Day28类的定义和方法

PS:每天的内容都有示例代码的,在gitee主页 不是只有讲义的几句话,,不会还有人不知道吧知识点回顾:类的定义pass占位语句类的初始化方法类的普通方法类的继承:属性的继承、方法的继承一.知识点学习。

2025-07-28 23:44:16 725

原创 疏老师-python训练营-Day27函数专题2:装饰器

知识点回顾:装饰器的思想:进一步复用函数的装饰器写法注意内部函数的返回值作业:编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)一.知识点的学习。

2025-07-27 22:25:21 721

原创 疏老师-python训练营-Day26函数专题1:函数定义与参数

"""Docstring: 描述函数的功能、参数和返回值 (可选但强烈推荐)"""# 函数体: 实现功能的代码# ...return value # 可选,用于返回结果def: 关键字,表示开始定义一个函数。function_name: 函数的名称,应遵循Python的命名约定(通常是小写字母和下划线,例如 calculate_area,用英文单词含义和下划线来作为函数名)。parameter1, parameter2, ...: 函数的参数(也叫形参),是函数在被调用时接收的输入值。

2025-07-26 21:19:47 681

原创 疏老师-python训练营-Day25异常处理

知识点回顾:异常处理机制debug过程中的各类报错try-except机制try-except-else-finally机制在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。作业:理解今日的内容即可,可以检查自己过去借助ai写的代码是否带有try-except机制,以后可以尝试采用这类写法增加代码健壮性。老师今天的作业就是知识点。

2025-07-25 23:34:17 574

原创 疏老师-python训练营-Day24 元组和OS模块

好的代码组织和有效的文件管理是大型深度学习项目的基石。os 模块是实现这些目标的重要组成部分。

2025-07-24 23:39:34 853

原创 疏老师-python训练营-Day23pipeline管道

而非针对特定数据集。:1.区分所有列(特征)是object还是非object2.对于object又有标签和独热编码的不同处理3.开始分别处理。在这段代码中并没有直接就去处理具体数据了,比如ordinal_features = ['Home Ownership', 'Years in current job', 'Term']和nominal_features = ['Purpose']等非常具体的数据,删了屁事没有。(我指的是运行这段代码不是全部运行,因为这两条代码是后续的铺垫)。

2025-07-23 23:51:38 844

原创 疏老师-python训练营-Day22复习日

(比如有些特征组合起来(船上父母 / 子女数量特征和船上兄弟姐妹 / 配偶数量特征可以组合起来,人多力量大,活得纪律高)。有些特征(姓名有mr,dr,mrs)说不定也有用)但是特征工程对于我这个python机器学习初学者还是很费劲的,所以我先做了老师这些天的一些课程内容。人的遗忘是挺快的,我有些也不太记得了,好在我还知道基本顺序和知道函数大致作用和要修改的部分。接下来,开始提高准确率了,会发现提不了(这玩意用最基本的方法是很难提升的)0.先说一下结论,kaggle上的习题如果仅仅只靠老师教的方法,

2025-07-22 23:53:52 432

原创 疏老师-python训练营-Day21常见的降维算法

场景需求优先选 PCA优先选 t-SNE关注全局结构(类间分布)✅ 线性结构数据的全局趋势可视化❌ 局部优化会扭曲全局关系关注局部聚类(类内细节)❌ 线性投影可能破坏局部近邻关系✅ 非线性结构的局部关系保留更准确高维线性数据✅ 计算快,结果稳定❌ 可能过度放大噪声高维非线性数据❌ 可视化结果扭曲✅ 更接近数据真实的非线性结构大规模数据集(百万级)✅ 计算效率高(线性复杂度)❌ 计算慢(二次复杂度,适合小数据)

2025-07-21 21:31:17 767

原创 疏老师-python训练营-Day20奇异值SVD分解

因为后面的奇异值矩阵会用到,在奇异值矩阵中会按照奇异值(奇异值不就是特征值的平方根吗)的降序进行排序,也就是话语权越大(奇异值越大)的越在前面,为什么呀,为了降维,话语权小的我给你扔了。可是我们的奇异矩阵既然取了kxk,如果我们写V而不是V的转置,根据矩阵乘法,这个V的体型是kxn,k是k行,可是行对于取主要特征没用啊,那怎么办,那就转置取V转置的K行,不就是取V的K列吗,ok了。一个是逆矩阵一个是转置,我们学习过考研数学,知道这样的计算又要烦死了,所以我们要用对称矩阵,可以用转置表示A。

2025-07-20 20:34:18 620

原创 疏老师-python训练营-Day19常见的特征筛选算法

2.4树模型重要性:threshold=""不只有mean一种,还有其他的,我列了三条,发现threshold="0.5*mean",效果最好,accuracy是0.85。这一天的内容是关于特征筛选的,特征降维有两种方式,一种是特征筛选,一种是特征降维。2.3lasso筛选:这个里面的alpha参数填0.02-0.03是最好的,accuracy达到0.85。2.2皮尔逊相关系数筛选:当我k是7而不是全部特征时,效果最好达到了0.87。2.5shap重要性:表现最差,k怎么改都达不到0.7。

2025-07-19 15:50:14 306

原创 疏老师-python训练营-Day18补一下:并且评估特征工程后模型效果有无提升这块内容

1.再聚类操作后,我们的X不再是原来的X而是多了一个叫KMeans_Cluster特征的X,这个KMeans_Cluster可以改名字,但我觉得没有必要。2.跑基准模型,基准模型我采用重新读数据的方法,这样就避免和X中的KMeans_Cluster特征。看最后两个index,哈哈,X和X_base区别就是KMeans_Cluster,相同点是都没有target。14是X中的列名个数,比base多一个。这个13是X_base的列名个数,准确率84。补一下这块,我看没人跑这块,我来跑。

2025-07-19 00:59:04 337

原创 疏老师-python训练营-Day18推断聚类后蔟的类型

聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。今天有一个和老师案例不一样的地方,就是我前四个重要特征中有两个是连续,另两个是离散。老师他做信贷数据全是离散,所以他用的全是直方图。我问了豆包,它也同意。1.昨天内容2.今天内容开始推断聚类后蔟的类型,老师这段话价值很高。

2025-07-18 23:53:12 592

原创 疏老师-python训练营-Day17常见聚类算法

这里要注意eps_range不可以用老师的,用老师的0.3-0.8就属于无法计算评估指标,这说明这个数据集是比较稀疏的,不是信贷数据集很紧凑。所以先试探一下,步子跨大一些,直接eps_range = np.arange(1, 5, 1)会发现2这里都能计算,1和4和3不太行。实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。除了经典的评估指标,还需要关注聚类出来每个簇对应的样本个数,避免太少没有意义。

2025-07-17 23:43:10 289

疏老师-python训练营-Day31作业心脏病数据

疏老师-python训练营-Day31作业心脏病数据

2025-07-31

疏老师-python训练营-Day30模块和库的导入

day30所有文件

2025-07-30

疏老师-python训练营-Day30模块和库的导入

day30所有文件

2025-07-30

心力衰竭预测-和老师的心脏病预测数据不一样

心力衰竭预测-和老师的心脏病预测数据不一样

2025-07-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除