短电偶极子电场详解 (Hertzian dipole,无穷小偶极子)

关于短电偶极子场量的表达式

任何直天线都可认为是由大量很短的导体串接而成的,所以需要首先阐明短导体的辐射性能,然后再研究实际使用的长直导体。短的直导体通常称为短偶极子,尽管很短但仍是有限长度的。对于短而趋零的情况,则称无限小偶极子(infinitesimal dipole)

因为发现有很多不同形式的场量的表达,因此把目前遇到过的电场形式总结如下。虽然场量的形式有所不同,实则表示的同一个东西,有些时候是时域形式,有些时候是频域形式,又有些是电流源,有些又是用电荷源表示的。

关于各式的详细推导,可参考本人博客: Short Electric Dipole

  1. 天线圣经(Balanis著)中,第三版中在(4-10b)
    E θ = j η k I 0 L sin ⁡ θ 4 π ϵ 0 r [ 1 + 1 j k r − 1 ( k r ) 2 ] e − j k r E_\theta = j\eta\frac{kI_0L\sin\theta}{4\pi\epsilon_0 r}\left[1+\frac{1}{jkr}-\frac{1}{(kr)^2}\right]e^{-jkr} Eθ=jη4πϵ0rkI0Lsinθ[1+jkr1(kr)21]ejkr

  2. 在时域情况下用电荷源表示
    E θ = r ^ × ( r ^ × z ^ ) 4 π ϵ 0 c 2 r [ ∂ t 2 f ( t − τ ) ] + 3 ( r ^ ⋅ z ^ ) r ^ − z ^ 4 π ϵ 0 r 3 [ f ( t − τ ) + τ ∂ t f ( t − τ ) ] E_\theta = \frac{\hat{r}\times(\hat{r}\times\hat{z})}{4\pi\epsilon_0 c^2 r}\left[\partial_t^2 f(t-\tau)\right]+\frac{3(\hat{r}\cdot\hat{z})\hat{r}-\hat{z}}{4\pi \epsilon_0 r^3}\left[f(t-\tau)+\tau\partial_t f(t-\tau)\right] Eθ=4πϵ0c2rr^×(r^×z^)[t2f(tτ)]+4πϵ0r33(r^z^)r^z^[f(tτ)+τtf(tτ)]

  3. 对应的频域时用电流源表示
    E θ = − j ω μ 0 e − j k r 4 π r [ − r ^ × r ^ × I ⃗ l + ( − j k r + 1 ( k r ) 2 ) ( 3 r ^ r ^ ⋅ I ⃗ l − I ⃗ l ) ] E_\theta = \frac{-j\omega\mu_0e^{-jkr}}{4\pi r}\left[-\hat{r}\times\hat{r}\times\vec{I}l+\left(-\frac{j}{kr}+\frac{1}{(kr)^2}\right)(3\hat{r}\hat{r}\cdot \vec{I}l-\vec{I}l)\right] Eθ=4πrμ0ejkr[r^×r^×I l+(krj+(kr)21)(3r^r^I lI l)]

  4. 若考虑在远场时,可以得到常用的场量形式(在球坐标下)
    E θ = j ω μ 0 e − j k r 4 π r I l sin ⁡ θ E_\theta = \frac{j\omega\mu_0 e^{-jkr}}{4\pi r}Il\sin\theta Eθ=4πrμ0ejkrIlsinθ

### 赫兹电偶极子的辐射特性 赫兹电偶极子Hertzian dipole),也被称为无穷小偶极子,是一种理想化的天线模型,用于研究电磁波的辐射特性。它是一个非常的导体,其长度远小于工作波长[^3]。在电磁场理论中,赫兹电偶极子的辐射特性可以通过麦克斯韦方程组及其解来描述,特别是在远区(\( r \gg \lambda \))条件下[^1]。 #### 辐射场的计算 赫兹电偶极子的辐射场可以分解为电场和磁场两部分。在远区条件下,辐射场的主要成分是横电磁波(TEM波)。对于一个长度为 \( l \) 的赫兹电偶极子,假设电流分布为均匀的正弦波,则其辐射场的强度与以下因素有关: - 偶极子的长度 \( l \) - 工作频率 \( f \) 或波长 \( \lambda = c/f \) - 电流幅度 \( I_0 \) 在远区,电场和磁场的关系满足: \[ E_\theta = j \frac{\mu_0 I_0 l}{4\pi r} k \sin(\theta) e^{-jkr} \] \[ H_\phi = \frac{I_0 l}{4\pi r} \sin(\theta) e^{-jkr} \] 其中: - \( k = 2\pi/\lambda \) 是波数, - \( r \) 是观察点到偶极子的距离, - \( \theta \) 是观察方向与偶极子轴线的夹角。 #### 辐射图 赫兹电偶极子的辐射图呈现对称的“八”字形,类似于普通偶极天线的辐射模式[^2]。主瓣的方向垂直于偶极子的轴线,即在 \( \theta = \pi/2 \) 方向上辐射最强,而在 \( \theta = 0 \) 和 \( \theta = \pi \) 方向上没有辐射。这种特性表明赫兹电偶极子的辐射是高度方向性的。 #### 辐射功率 赫兹电偶极子的总辐射功率可以通过积分其远区辐射场的能量密度得到: \[ P_{\text{rad}} = \frac{\mu_0 I_0^2 l^2 \omega^4}{12\pi c^3} \] 其中 \( \omega = 2\pi f \) 是角频率。可以看出,辐射功率与电流幅度的平方、偶极子长度的平方以及频率的四次方成正比。 #### 天线效率 赫兹电偶极子的天线效率通常较低,因为它的尺寸很小,导致阻抗不匹配问题严重。然而,作为一种理论模型,它为研究实际天线的辐射性能提供了基础。 ```python import numpy as np # 参数设置 I0 = 1.0 # 电流幅度 (A) l = 0.01 # 偶极子长度 (m) f = 3e8 # 频率 (Hz) r = 100 # 观察距离 (m) theta = np.linspace(0, 2 * np.pi, 100) # 角度范围 # 计算参数 c = 3e8 # 光速 (m/s) lambda_ = c / f k = 2 * np.pi / lambda_ mu0 = 4 * np.pi * 1e-7 # 真空磁导率 (H/m) # 远区电场 E_theta = 1j * mu0 * I0 * l / (4 * np.pi * r) * k * np.sin(theta) * np.exp(-1j * k * r) # 辐射功率 Prad = mu0 * I0**2 * l**2 * (2 * np.pi * f)**4 / (12 * np.pi * c**3) print(f"Radiated Power: {Prad:.2e} W") ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值