Anaconda初学者常用命令总结

本文介绍了如何使用Anaconda进行包管理和系统优化的方法,包括删除无用包、更新软件包、配置国内镜像源等实用操作,帮助提高开发效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定期删除无用的包,清理存储空间

conda clean -p //删除没有用的包
conda clean -t //tar打包
conda clean -y -all //删除所有的安装包及cache

更新Anaconda

conda update conda
conda update anaconda
conda update anaconda-navigator //update最新版本的anaconda-navigator
conda update xxx #更新xxx文件包

给Anaconda添加国内镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

conda config --set show_channel_urls yes

https改为http,Anaconda下载速度会变得更快

condarc文本的默认通道

default_channels:

  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
    - default

暂且先记录到这里

Anaconda是一个流行的开源数据科学平台,特别适合Python初学者。它包含了许多必备的数据分析和科学计算库,如NumPy、Pandas和Matplotlib等。以下是Anaconda对Python初学者的入门使用指南: 1. **安装**: 首先,访问Anaconda官网(https://www.anaconda.com/products/distribution)下载对应系统的安装包。选择“Individual”版本而非“Miniconda”,因为它包含了所有常用工具。 2. **初始化**:安装完成后,打开Anaconda Navigator,创建一个新的环境(Environments),这有助于管理不同的项目需求并避免冲突。 3. **学习基本命令**: - `conda create` 创建新环境 - `conda activate [env_name]` 激活特定环境 - `pip install [package_name]` 或 `conda install [package_name]` 安装Python库 - `conda list` 查看当前环境中已安装的库 4. **环境管理**:了解如何在多个环境之间切换,这对于处理不同项目的依赖是至关重要的。 5. **基础数据分析**:利用Pandas库处理数据,NumPy进行数值运算,matplotlib画图。 6. **Jupyter Notebook**:这是一种交互式的代码编写环境,非常适合探索数据和文档化工作流程。在Anaconda Navigator中可以轻松启动Jupyter Notebook。 7. **熟悉社区资源**:Anaconda有一个活跃的社区,包括Conda-forge和Stack Overflow,遇到问题时可以在这些平台上寻求帮助。 8. **实践项目**:通过实际的项目练习,例如Kaggle竞赛或自己的小项目,巩固所学知识。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值