python 之 迭代器、生成器、装饰器

一、迭代器(iterator)

        迭代器是一个可以被记住遍历位置的对象,它从集合的第一个元素开始访问,直到访问到最后一个元素。迭代器有两个基本方法:

        1、__iter__():返回迭代器对象自身。

        2、__next__():从集合中返回下一个元素。如果没有更多元素了,则会引发 StopIteration 异常。

在谈论迭代器之前,必须先理解可迭代对象,常用的 listtupledictsetstr 等都是可迭代对象。

一个对象是可迭代的,意味着它可以提供一个迭代器。从技术上讲,任何实现了 __iter__() 方法的对象都是可迭代的。

for 循环的幕后工作原理:

当写下一个 for 循环时,Python 内部其实就在使用迭代器:

my_list = [1, 2, 3]
for i in my_list:
    print(i)

这背后实际发生的是:

  1. Python 调用 iter(my_list),这会调用 my_list 的 __iter__() 方法,从而得到一个迭代器对象。
  2. 循环开始,Python 不断地调用这个迭代器对象的 next() 方法(即 __next__())。
  3. next() 返回的值被赋给变量 i,然后执行循环体。
  4. 当所有元素都遍历完毕,next() 方法会引发 StopIteration 异常。
  5. for 循环捕捉到这个异常,结束循环。

手动模拟上面的for循环:

my_list = [1, 2, 3]

# 1. 从可迭代对象 my_list 获取迭代器
my_iterator = iter(my_list)

# 2. 不断调用 next()
print(next(my_iterator))  # 输出: 1
print(next(my_iterator))  # 输出: 2
print(next(my_iterator))  # 输出: 3

# 3. 再次调用会引发 StopIteration 异常
try:
    print(next(my_iterator))
except StopIteration:
    print("没有更多元素了!")

二、生成器 (Generator)

什么是生成器?

生成器是创建迭代器的一种更简单、更优雅的方式。

不需要去写一个完整的类并实现 __iter__() 和 __next__() 方法。只需要写一个普通的函数,但是使用 yield 关键字而不是 return 来返回值。

生成器函数 (Generator Function)

当一个函数包含 yield 关键字时,它就变成了一个生成器函数。调用这个函数不会立即执行它,而是会返回一个生成器对象(它本身就是一种迭代器)。

def countdown(n):
    print("生成器开始运行...")
    while n > 0:
        yield n  # 使用 yield 返回值,并暂停在这里
        n -= 1
    print("生成器结束。")

# 1. 调用生成器函数,得到一个生成器对象
my_generator = countdown(3)
print(type(my_generator)) # <class 'generator'>

# 2. 像迭代器一样使用它
print(next(my_generator)) # 输出: 生成器开始运行... \n 3
print(next(my_generator)) # 输出: 2
print(next(my_generator)) # 输出: 1

# 3. 再次调用,函数继续执行到结束,并引发 StopIteration
# next(my_generator) # 输出: 生成器结束。 然后抛出 StopIteration 异常

yield 的魔力:

  • 当 next() 被调用时,生成器函数会从头开始执行,或者从上次 yield 暂停的地方继续执行。
  • 当执行到 yield n 时,它会把 n 的值“产出”(返回)给调用者。
  • 然后,函数的状态(包括所有局部变量)被冻结,执行被暂停
  • 当下一次 next() 被调用时,函数从被冻结的地方恢复执行。
生成器表达式 (Generator Expression)

这是一种更简洁的创建生成器的方式,语法非常像列表推导式,但用圆括号 () 而不是方括号 []

# 列表推导式:一次性创建所有元素,占用大量内存
list_comp = [i * i for i in range(1000)]

# 生成器表达式:返回一个生成器对象,不立即计算,几乎不占内存
gen_exp = (i * i for i in range(1000))

print(list_comp)  # 会打印出 1000 个元素的列表
print(gen_exp)    # <generator object <genexpr> at 0x...>

# 你可以像遍历其他迭代器一样遍历它
for num in gen_exp:
    # 每次循环,才会计算一个 i*i
    # print(num) # 这里会依次打印 0, 1, 4, 9 ...
    pass

简单来说:所有的生成器都是迭代器,但不是所有的迭代器都是生成器。生成器是Python提供的用于轻松创建迭代器的工具。

三、装饰器(Decorators)

  • 是什么:装饰器本质上是一个函数,它接收一个函数作为参数,并返回一个新的函数。它允许你在不修改原函数代码的情况下,为函数增加额外的功能。
  • 为什么重要:广泛用于日志记录、性能测试、事务处理、权限校验等场景(如 Flask/Django 中的路由 @app.route('/'))。
  • 语法:使用 @ 符号,也称为“语法糖”。
def my_decorator(func):
    def wrapper():
        print("在函数运行前做点什么...")
        func()
        print("在函数运行后做点什么...")
    return wrapper

@my_decorator
def say_hello():
    print("Hello!")

say_hello() 
# 输出:
# 在函数运行前做点什么...
# Hello!
# 在函数运行后做点什么...

Pytest 中几乎所有以 @ 开头的标记(marks)都是装饰器的具体应用。

如:

        @pytest.mark.parametrize:参数化测试

   @pytest.mark.skip 和 @pytest.mark.skipif:跳过某个测试函数

   @pytest.fixture:这是 Pytest 的基石。Fixture 是在测试函数运行之前(或之后)执行的函数,用于提供测试所需的数据、对象或环境准备(如数据库连接、临时文件等)。

  • 用 @pytest.fixture 装饰一个函数,使其成为一个 fixture。测试函数可以通过将其函数名作为参数来“请求”并使用这个 fixture。可以使用 yield 来实现 setup 和 teardown 逻辑:yield 之前是 setup,yield 之后是 teardown(清理)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值