一、迭代器(iterator)
迭代器是一个可以被记住遍历位置的对象,它从集合的第一个元素开始访问,直到访问到最后一个元素。迭代器有两个基本方法:
1、__iter__():返回迭代器对象自身。
2、__next__():从集合中返回下一个元素。如果没有更多元素了,则会引发 StopIteration
异常。
在谈论迭代器之前,必须先理解可迭代对象,常用的 list
, tuple
, dict
, set
, str
等都是可迭代对象。
一个对象是可迭代的,意味着它可以提供一个迭代器。从技术上讲,任何实现了 __iter__()
方法的对象都是可迭代的。
for
循环的幕后工作原理:
当写下一个 for
循环时,Python 内部其实就在使用迭代器:
my_list = [1, 2, 3]
for i in my_list:
print(i)
这背后实际发生的是:
- Python 调用
iter(my_list)
,这会调用my_list
的__iter__()
方法,从而得到一个迭代器对象。 - 循环开始,Python 不断地调用这个迭代器对象的
next()
方法(即__next__()
)。 next()
返回的值被赋给变量i
,然后执行循环体。- 当所有元素都遍历完毕,
next()
方法会引发StopIteration
异常。 for
循环捕捉到这个异常,结束循环。
手动模拟上面的for循环:
my_list = [1, 2, 3]
# 1. 从可迭代对象 my_list 获取迭代器
my_iterator = iter(my_list)
# 2. 不断调用 next()
print(next(my_iterator)) # 输出: 1
print(next(my_iterator)) # 输出: 2
print(next(my_iterator)) # 输出: 3
# 3. 再次调用会引发 StopIteration 异常
try:
print(next(my_iterator))
except StopIteration:
print("没有更多元素了!")
二、生成器 (Generator)
什么是生成器?
生成器是创建迭代器的一种更简单、更优雅的方式。
不需要去写一个完整的类并实现 __iter__()
和 __next__()
方法。只需要写一个普通的函数,但是使用 yield
关键字而不是 return
来返回值。
生成器函数 (Generator Function)
当一个函数包含 yield
关键字时,它就变成了一个生成器函数。调用这个函数不会立即执行它,而是会返回一个生成器对象(它本身就是一种迭代器)。
def countdown(n):
print("生成器开始运行...")
while n > 0:
yield n # 使用 yield 返回值,并暂停在这里
n -= 1
print("生成器结束。")
# 1. 调用生成器函数,得到一个生成器对象
my_generator = countdown(3)
print(type(my_generator)) # <class 'generator'>
# 2. 像迭代器一样使用它
print(next(my_generator)) # 输出: 生成器开始运行... \n 3
print(next(my_generator)) # 输出: 2
print(next(my_generator)) # 输出: 1
# 3. 再次调用,函数继续执行到结束,并引发 StopIteration
# next(my_generator) # 输出: 生成器结束。 然后抛出 StopIteration 异常
yield
的魔力:
- 当
next()
被调用时,生成器函数会从头开始执行,或者从上次yield
暂停的地方继续执行。 - 当执行到
yield n
时,它会把n
的值“产出”(返回)给调用者。 - 然后,函数的状态(包括所有局部变量)被冻结,执行被暂停。
- 当下一次
next()
被调用时,函数从被冻结的地方恢复执行。
生成器表达式 (Generator Expression)
这是一种更简洁的创建生成器的方式,语法非常像列表推导式,但用圆括号 ()
而不是方括号 []
。
# 列表推导式:一次性创建所有元素,占用大量内存
list_comp = [i * i for i in range(1000)]
# 生成器表达式:返回一个生成器对象,不立即计算,几乎不占内存
gen_exp = (i * i for i in range(1000))
print(list_comp) # 会打印出 1000 个元素的列表
print(gen_exp) # <generator object <genexpr> at 0x...>
# 你可以像遍历其他迭代器一样遍历它
for num in gen_exp:
# 每次循环,才会计算一个 i*i
# print(num) # 这里会依次打印 0, 1, 4, 9 ...
pass
简单来说:所有的生成器都是迭代器,但不是所有的迭代器都是生成器。生成器是Python提供的用于轻松创建迭代器的工具。
三、装饰器(Decorators)
- 是什么:装饰器本质上是一个函数,它接收一个函数作为参数,并返回一个新的函数。它允许你在不修改原函数代码的情况下,为函数增加额外的功能。
- 为什么重要:广泛用于日志记录、性能测试、事务处理、权限校验等场景(如 Flask/Django 中的路由
@app.route('/')
)。 - 语法:使用
@
符号,也称为“语法糖”。
def my_decorator(func):
def wrapper():
print("在函数运行前做点什么...")
func()
print("在函数运行后做点什么...")
return wrapper
@my_decorator
def say_hello():
print("Hello!")
say_hello()
# 输出:
# 在函数运行前做点什么...
# Hello!
# 在函数运行后做点什么...
Pytest 中几乎所有以 @
开头的标记(marks)都是装饰器的具体应用。
如:
@pytest.mark.parametrize:参数化测试
@pytest.mark.skip
和 @pytest.mark.skipif:跳过某个测试函数
@pytest.fixture:
这是 Pytest 的基石。Fixture 是在测试函数运行之前(或之后)执行的函数,用于提供测试所需的数据、对象或环境准备(如数据库连接、临时文件等)。
-
用
@pytest.fixture
装饰一个函数,使其成为一个 fixture。测试函数可以通过将其函数名作为参数来“请求”并使用这个 fixture。可以使用yield
来实现 setup 和 teardown 逻辑:yield
之前是 setup,yield
之后是 teardown(清理)。