学习模式:原理简述+问题示例+代码实现+运行效果
学习目标:
1.k-近邻分类算法
2.从文本文件中解析和导入数据
3.使用Matplotlib创建扩散图
4.归一化数值
学习内容:
1.k-近邻算法
概念:采用测量不同特征值之间的距离方法进行分类。
工作原理:存在一个样本集合(训练样本集),且样本集合中每个数据都存在标签(也就是我们已知训练样本集合中每个数据所属分类的对应关系),再输入不带标签的新数据后,将新数据的每个特征与样本集合中数据对应的特征进行比较,然后算法提取样本集合中特征最相似数据的分类标签(一般来说,我们只选择样本集合中k个相似的数据,通常k不大于20的整数,并在k个最相似的出现次数最多的分类作为新数据的分类)。
2.1 对未知电影进行分类(动作片和爱情片)
A:每部电影的打斗镜头,接吻镜头来评估未知电影的类型模型
电影名称 | 打斗镜头 | 接吻镜头 | 电影类型 | |||
---|---|---|---|---|---|---|
C... | 3 | 104 | 爱情片 |