《机器学习实战》(新手入门笔记)-第2章 k-近邻算法(kNN)

学习模式:原理简述+问题示例+代码实现+运行效果
学习目标:

1.k-近邻分类算法

2.从文本文件中解析和导入数据

3.使用Matplotlib创建扩散图

4.归一化数值

学习内容:

1.k-近邻算法

        概念:采用测量不同特征值之间的距离方法进行分类。

        工作原理:存在一个样本集合(训练样本集),且样本集合中每个数据都存在标签(也就是我们已知训练样本集合中每个数据所属分类的对应关系),再输入不带标签的新数据后,将新数据的每个特征与样本集合中数据对应的特征进行比较,然后算法提取样本集合中特征最相似数据的分类标签(一般来说,我们只选择样本集合中k个相似的数据,通常k不大于20的整数,并在k个最相似的出现次数最多的分类作为新数据的分类)。

2.1 对未知电影进行分类(动作片和爱情片)

A:每部电影的打斗镜头,接吻镜头来评估未知电影的类型模型

电影名称 打斗镜头 接吻镜头 电影类型
C... 3 104 爱情片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

六点半A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值