2022年4月16日
整理了这篇博客的pdf版本,但是缺的部分可能没法补上啦,把毕业的事忙完了可能!可以!对着书把笔记再整理一遍!所以所以,如果有需要pdf版本的可以私信我(可能回得比较慢,也可以直接加QQ: 812051061)。
大家加油!一定会成功的!
王道考研数据结构笔记
第二章 线性表
2.1 线性表的定义和基本操作
要点:
- 线性表的基本操作——创销、增删、改查
- 传入参数时,何时要用引用
&
2.2 线性表的顺序表示
2.2.1 顺序表的定义
- 顺序表的实现———静态分配
#include <stdio.h>
#define MaxSize 10 //定义最大长度
typedef struct{
int data[MaxSize]; //用静态的“数组”存放数据元素 ElemType:int
int Length; //顺序表的当前长度
}SqList; //顺序表的类型定义
//基本操作——初始化一个顺序表
void InitList(SqList &L){
for(int i=0; i<MaxSize; i++){
L.data[i]=0; //将所有数据元素设置为默认初始值0,如果没有这一步,内存中会有遗留的“脏数据”
}
L.Length=0; //顺序表初始长度为0
}
int main(){
SqList L; //声明一个顺序表
//在内存里分配存储顺序表L的空间
//包括MaxSize*sizeof(ElemType)和存储length的空间
InitList(L); //初始化这个顺序表
//...
return 0;
}
- 顺序表的实现——动态分配
malloc
函数:
L.data = (ElemType*)malloc(sizeof(ElemType)*InitSize)
其中(ElemType*)
可强制转换数据类型
#include <stdlib.h> //malloc,free函数的头文件
#define InitSize 10 //默认的最大长度
typedef struct{
int *data; //指示动态分配数组的指针
int MaxSize; //顺序表的最大容量
int length; //顺序表的当前长度
}SeqList;
void InitSize(SeqList &L){
L.data = (int*)malloc(sizeof(int)*InitSize); //用malloc函数申请一片连续的存储空间
L.length = 0;
L.MaxSize = InitSize;
}
int main(){
SeqList L;
InitSize(L);
//...其余操作
IncreaseSize(L,5);
return 0;
}
//增加动态数组的长度
void IncreaseSize(SeqList &L, int len){
int *p=L.data
L.data = (int*)malloc((L.MaxSize+len)*sizeof(int));
for(int i=0; i<L.length; i++){
L.data[i] = p[i] //将数据复制到新区域
}
L.MaxSize = L.MaxSize + len; //顺序表最大长度增加len
free(p); //释放原来的内存空间
}
2.2.2 顺序表上基本操作的实现 (插入和删除)
- 顺序表基本操作——插入
ListInsert(&L,i,e)
基于静态分配的代码实现
#define MaxSize 10 //定义最大长度
typedef struct{
int data[MaxSize]; //用静态的“数组”存放数据元素 ElemType:int
int Length; //顺序表的当前长度
}SqList; //顺序表的类型定义
//基本操作——在L的位序i处插入元素e
bool ListInsert(SqList &L, int i, int e){
//判断i的范围是否有效
if(i<1||i>L.length+1)
return false;
if(L.length>MaxSize) //当前存储空间已满,不能插入
return false;
for(int j=L.length; j>i; j--){
//将第i个元素及其之后的元素后移
L.data[j]=L.data[j-1];
}
L.data[i-1]=e; //在位置i处放入e
L.length++; //长度加1
return true;
}
int main(){
SqList L; //声明一个顺序表
InitList(L); //初始化这个顺序表
//...插入几个元素
ListInsert(L,3,3);
return 0;
}
时间复杂度分析
- 关注最深层循环语句——
L.data[j]=L.data[j-1]
的执行次数与问题规模n——L.length
的关系; - 最好情况:插入表尾,不需要移动元素,i=n+1,循环0次;最好时间复杂度 = O(1)
- 最坏情况:插入表头,需要将原有的n个元素全都向后移动,i=1,循环n次;最坏时间复杂度 = O(n)
- 平均情况:假设新元素插入到任何一个位置的概率p(=1/n+1)相同
插入到第i个位置 | 循环次数 |
---|---|
1 | n |
2 | n-1 |
3 | n-2 |
… | … |
n+1 | 0 |
平均循环次数 = np + (n-1)p + (n-2)p + … + 1×p = [ n(n+1)/2 ]×[ 1/(n+1) ] = n/2
平均时间复杂度 = O(n)
- 顺序表基本操作——删除
ListDelete(&L,i,e)
:删除表L中的第i个位置的元素,并用e返回删除元素的值
基于静态分配的代码实现
#define MaxSize 10 //定义最大长度
typedef struct{
int data[MaxSize]; //用静态的“数组”存放数据元素 ElemType:int
int Length; //顺序表的当前长度
}SqList; //顺序表的类型定义
bool LisDelete(SqList &L, int i, int &e){
// e用引用型参数
//判断i的范围是否有效
if(i<1||i>L.length)
return false;
e = L.data[i-1] //将被删除的元素赋值给e
for(int j=L.length; j>i; j--){
//将第i个后的元素前移
L.data[j-1]=L.data[j];
}
L.length--; //长度减1
return true;
}
int main(){
SqList L; //声明一个顺序表
InitList(L); //初始化这个顺序表
//...插入几个元素
int e = -1; //用变量e把删除的元素“带回来”
if(LisDelete(L,3,e))
printf("已删除第三个元素,删除元素值=%d\n",e);
else
printf("位序i不合法,删除失败\n");
return 0;
}
时间复杂度分析
- 关注最深层循环语句——
L.data[j-1]=L.data[j]
的执行次数与问题规模n——L.length
的关系; - 最好情况:删除表尾元素,不需要移动元素,i=n,循环0次;最好时间复杂度 = O(1);
- 最坏情况:删除表头元素,需要将后续的n-1个元素全都向前移动,i=1,循环n-1次;最坏时间复杂度 = O(n);
- 平均情况:假设删除任何一个元素(1,2,3,…,length)的概率相同 p=1/n
删除第i个元素 | 循环次数 |
---|---|
1 | n-1 |
2 | n-2 |
3 | n-3 |
… | … |
n | 0 |
平均循环次数 = (n-1)p + (n-2)p + … + 1×p = [ n(n-1)/2 ]×[ 1/(n) ] = n-1/2
平均时间复杂度 = O(n)
- 顺序表基本操作——按位查找(顺序表)
GetElem(L,i)
: 按位查找操作——获取表L中第i个位置元素的值
基于静态分配的代码实现
#define MaxSize 10 //定义最大长度
typedef struct{
ElemType data[MaxSize]; //用静态的“数组”存放数据元素
int Length; //顺序表的当前长度
}SqList; //顺序表的类型定义
ElemType GetElem(SqList L, int i){
// ...判断i的值是否合法
return L.data[i-1]; //注意是i-1
}
基于动态分配的代码实现
#define InitSize 10 //顺序表的初始长度
typedef struct{
ElemType *data; //指示动态分配数组的指针
int MaxSize; //顺序表的最大容量
int length; //顺序表的当前长度
}SeqList;
ElemType GetElem(SqList L, int i){
// ...判断i的值是否合法
return L.data[i-1]; //就算是指针也能用数组下标哦!
}
时间复杂度分析
O(1)
由于顺序表的各个数据元素在内存中连续存放,因此可以根据起始地址和数据元素大小立即找到第i个元素———“随机存取”特性;
- 顺序表基本操作——按值查找
LocateElem(L, e)
: 按值查找操作,在表L中查找具有给定关键字值的元素;
基于动态分配的代码实现
#define InitSize 10 //定义最大长度
typedef struct{
ElemTyp *data; //用静态的“数组”存放数据元素
int Length; //顺序表的当前长度
}SqList;
//在顺序表L中查找第一个元素值等于e的元素,并返回其位序
int LocateElem(SqList L, ElemType e){
for(int i=0; i<L.lengthl i++)
if(L.data[i] == e)
return i+1; //数组下标为i的元素值等于e,返回其位序i+1
return 0; //推出循环,说明查找失败
}
Q: 如果顺序表里存放的是结构类型的数据元素,可不可以用 ==
进行比较?
A: 不能!结构类型的比较,需要依次对比各个分量来判断两个结构体是否相等;
例:
typedef struct{
int num;
int people;
}Customer;
void test(){
Customer a;
Customer b;
//...
if (a.num == b.num && a.people == b.people){
printf("相等");
}else{
printf("不相等");
}
}
时间复杂度分析
- 最深处循环语句:
if(L.data[i] == e)
与问题规模n=L.length(表长)
的关系; - 最好情况:查找目标元素在表头,循环1次,最好时间复杂度=O(1)
- 最坏情况:查找目标元素在表尾,循环n次,最好时间复杂度=O(n)
- 平均情况:假设目标元素出现在任何一个位置的概率相同,p=1/n
目标元素所在位置i | 循环次数 |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
… | … |
n | n |
平均循环次数 = 1×1/n + 2×1/n +…+ n×1/n = [ n(n+1)/2 ] × 1/n = (n+1)/2
平均时间复杂度 = O(n)
2.3 线性表的链式表示
2.3.1 单链表的定义
- 何为单链表?
- 链式存储
- 每个结点存储:数据元素自身信息 & 指向下一个结点(后继)的指针
- 优点:不要求大片连续空间,改变容量方便
- 缺点:不可随机存取,要耗费一定空间存放指针
- 代码定义单链表
struct LNode{
//定义单链表节点类型 LNode:结点
ElemType data; //每个结点存放一个数据元素 data:数据域
struct LNode *next; //指针指向下一个结点 next:指针域
};
增加一个新的结点:在内存中申请一个结点所需的空间,并用指针p指向这个结点
struct LNode* p = (struct LNode*) malloc(sizeof(struct LNode))
如果每次都要写struct很麻烦,所以可以利用typedef关键字——数据类型重命名:type<数据类型><别名>
Eg:
typedef int zhengshu;
typedef int *zhengshuzhizhen; //指向int型的指针
上面操作可以化简为:
typedef struct LNode LNode;
LNode* p = (LNode*) malloc(sizeof(LNode))
最简洁代码实现:
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
以上代码等同于:
struct LNode{
ElemType data;
struct LNode *next;
};
typedef struct LNode LNode; //重命名
typedef struct LNode *LinkList;
要表示一个单链表时,只需声明一个头指针L,指向单链表的第一个结点:
LNode *L; // 声明一个指向单链表第一个结点的指针,强调这是结点
//或者
LinkList L; // 声明一个指向单链表第一个结点的指针,强调这是链表
- 两种实现方法
- 不带头结点的单链表
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
//初始化一个空的单链表
bool InitList(LinkList &L){
//注意用引用 &
L = NULL; //空表,暂时还没有任何结点;
return true;
}
void test(){
LinkList L; //声明一个指向单链表的指针: 头指针
//初始化一个空表
InitList(L);
//...
}
//判断单链表是否为空
bool Empty(LinkList L){
if (L == NULL)
return true;
else
return false;
}
- 带头结点的单链表
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
//初始化一个单链表(带头结点)
bool InitList(LinkList &L){
L = (LNode*) malloc(sizeof(LNode)); //头指针指向的结点——分配一个头结点(不存储数据)
if (L == NULL) //内存不足,分配失败
return false;
L -> next = NULL; //头结点之后暂时还没有结点
return true;
}
void test(){
LinkList L; //声明一个指向单链表的指针: 头指针
//初始化一个空表
InitList(L);
//...
}
//判断单链表是否为空(带头结点)
bool Empty(LinkList L){
if (L->next == NULL)
return true;
else
return false;
}
不带头结点 V.S. 带头结点
- 不带头结点:写代码麻烦!对第一个数据节点和后续数据节点的处理需要用不同的代码逻辑,对空表和非空表的处理也需要用不同的代码逻辑; 头指针指向的结点用于存放实际数据;
- 带头结点:头指针指向的头结点不存放实际数据,头结点指向的下一个结点才存放实际数据;
2.3.2 单链表上基本操作的实现
1. 单链表的插入
- 按位序插入 (带头结点)
ListInsert(&L, i, e)
: 在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后;其中头结点可以看作第0个结点,故i=1时也适用。
代码实现
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
//在第i个位置插入元素e(带头结点)
bool ListInsert(LinkList &L, int i, ElemType e){
//判断i的合法性, i是位序号(从1开始)
if(i<1)
return False;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){
//如果i>lengh, p最后会等于NULL
p = p->next; //p指向下一个结点
j++;
}
if (p==NULL) //i值不合法
return false;
//在第i-1个结点后插入新结点
LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点
s->data = e;
s->next = p->next;
p->next = s; //将结点s连到p后,后两步千万不能颠倒qwq
return true;
}
时间复杂度分析
最好情况:插入第1个位置 O(1)
最坏情况:插入表尾 O(n)
平均时间复杂度 = O(n)
- 按位序插入 (不带头结点)
ListInsert(&L, i, e)
: 在表L中的第i个位置上插入指定元素e = 找到第i-1个结点(前驱结点),将新结点插入其后; 因为不带头结点,所以不存在“第0个”结点,因此!i=1 时,需要特殊处理——插入(删除)第1个元素时,需要更改头指针L;
代码实现
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
bool ListInsert(LinkList &L, int i, ElemType e){
if(i<1)
return false;
//插入到第1个位置时的操作有所不同!
if(i==1){
LNode *s = (LNode *)malloc(size of(LNode));
s->data =e;
s->next =L;
L=s; //头指针指向新结点
return true;
}
//i>1的情况与带头结点一样!唯一区别是j的初始值为1
LNode *p; //指针p指向当前扫描到的结点
int j=1; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){
//如果i>lengh, p最后会等于NULL
p = p->next; //p指向下一个结点
j++;
}
if (p==NULL) //i值不合法
return false;
//在第i-1个结点后插入新结点
LNode *s = (LNode *)malloc(sizeof(LNode)); //申请一个结点
s->data = e;
s->next = p->next;
p->next = s;
return true;
}
除非特别声明,否则之后的代码都默认为带头结点哦,做题注意审题
- 指定结点的后插操作
InsertNextNode(LNode *p, ElemType e)
: 给定一个结点p,在其之后插入元素e; 根据单链表的链接指针只能往后查找,故给定一个结点p,那么p之后的结点我们都可知,但是p结点之前的结点无法得知;
代码实现
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
bool InsertNextNode(LNode *p, ElemType e){
if(p==NULL){
return false;
}
LNode *s = (LNode *)malloc(sizeof(LNode));
//某些情况下分配失败,比如内存不足
if(s==NULL)
return false;
s->data = e; //用结点s保存数据元素e
s->next = p->next;
p->next = s; //将结点s连到p之后
return true;
} //平均时间复杂度 = O(1)
//有了后插操作,那么在第i个位置上插入指定元素e的代码可以改成:
bool ListInsert(LinkList &L, int i, ElemType e){
if(i<1)
return False;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1){
//如果i>lengh, p最后会等于NULL
p = p->next; //p指向下一个结点
j++;
}
return InsertNextNode(p, e)
}
- 指定结点的前插操作
Q: 如何找到p结点的前驱节点?
A: 传入头指针L!就可以知道整个链表的信息了!
InsertPriorNode(LinkList L, LNode *p, ElemType e)
:循环查找p的前驱q,再对q进行后插操作,时间复杂度为O(n);
Q: 那如果不传入头指针L呢?
不传入头指针L的代码实现
//前插操作:在p结点之前插入元素e
bool InsertPriorNode(LNode *p, ElenType e){
if(p==NULL)
return false;
LNode *s = (LNode *)malloc(sizeof(LNode));
if(s==NULL) //内存分配失败
return false;
//重点来了!
s->next = p->next;
p->next = s; //新结点s连到p之后
s->data = p->data; //将p中元素复制到s
p->data = e; //p中元素覆盖为e
return true;
} //时间复杂度为O(1)
王道书版本代码
bool InsertPriorNode(LNode *p, LNode *s){
if(p==NULL || S==NULL)
return false;
s->next = p->next;
p->next = s; ///s连接到p
ELemType temp = p->data; //交换数据域部分
p->data = s->data;
s->data = temp;
return true;
}
2. 单链表的删除
- 按位序删除(带头结点)
ListDelete(&L, i, &e)
: 删除操作,删除表L中第i个位置的元素,并用e返回删除元素的值;头结点视为“第0个”结点;
思路:找到第i-1个结点,将其指针指向第i+1个结点,并释放第i个结点;
代码实现
typedef struct LNode{
ElemType data;
struct LNode *next;
}LNode, *LinkList;
bool ListDelete(LinkList &L, int i, ElenType &e){
if(i<1) return false;
LNode *p; //指针p指向当前扫描到的结点
int j=0; //当前p指向的是第几个结点
p = L; //L指向头结点,头结点是第0个结点(不存数据)
//循环找到第i-1个结点
while(p!=NULL && j<i-1</