- 博客(220)
- 收藏
- 关注
原创 【YOLOv11-目标检测】06-模型部署(C++)
本文介绍了使用C++部署YOLO模型的具体步骤:1. 克隆YOLOs-CPP项目并配置环境(ONNXRuntime和OpenCV);2. 修改build.sh脚本指定OpenCV路径和VS工具链;3. 构建项目并编译生成可执行文件;4. 删除冗余文件并修改CMakeLists.txt以简化项目;5. 最后将所需的dll文件(opencv_world4100.dll和onnxruntime.dll)拷贝至运行目录。整个过程详细说明了从环境配置到最终部署的完整流程,适用于Windows平台下的YOLO模型C++
2025-07-15 16:42:59
575
原创 【YOLOv11-目标检测】05-模型预测(手把手教程)
本文介绍了如何使用纯Python代码实现YOLO模型的预测功能。通过加载预训练模型,对输入图像进行目标检测,并可视化检测结果。代码展示了如何获取检测框的坐标、类别名称和置信度等关键信息,最终通过OpenCV显示带有检测框的图像。该流程完整呈现了从模型加载到结果可视化的预测全过程。
2025-07-15 13:56:53
139
原创 【YOLOv11-目标检测】04-模型训练(手把手教程)
本文介绍了YOLOv11目标检测模型的训练流程。主要内容包括:1)数据准备,需将数据集拆分为训练集和验证集;2)配置yaml文件,修改数据集路径和类别名称;3)调整训练参数,如模型类型、图像尺寸等;4)启动训练并查看结果。文章详细说明了从数据组织到模型训练的全过程,特别强调了配置文件修改要点和参数调整建议,最后展示了训练完成后的性能指标。
2025-07-10 14:28:29
180
原创 【YOLOv11-目标检测】03-数据格式转换(手把手教程)
前面两篇文章,我们分别学习了yolo原理和环境搭建,本篇文章,我们来学习如何将自己用labelme标注的json文件转换为yolo所需格式。
2025-07-10 10:56:34
779
原创 【YOLOv11-目标检测】目标检测数据格式(官方说明)
Ultralytics YOLO格式是一种用于定义训练项目中数据集的结构化配置。它涉及设置训练、验证和测试图像及其对应标签的路径。path: coco8 # 数据集根目录train: images/train # 训练图像(相对于'path')val: images/val # 验证图像(相对于'path')test: # 测试图像(可选)# 类别names:0: person1: bicycle...标签保存在*.txt文件中,每张图像对应一个文件,格式为,坐标已归一化。
2025-07-09 14:46:06
943
原创 【教程】在ubuntu安装Edge浏览器
摘要:本文介绍了在Linux系统上安装Microsoft Edge Dev浏览器的步骤。首先从指定网址下载.deb安装包,然后通过终端执行sudo dpkg -i microsoft-edge-*.deb命令完成安装。安装后可将Edge固定到快捷栏使用。若启动失败,建议更换版本重新安装。整个过程简单易操作,适合Linux用户快速部署Edge浏览器。(98字)
2025-07-09 11:02:40
225
原创 【超方便】ubuntu安装截图工具
《Snipaste Linux版安装使用指南》摘要:下载Linux版Snipaste后需右键设置"作为程序执行"权限才能运行。通过系统设置开启开机自启动,默认按F1键启动截图功能。该教程详细说明了从下载到配置的全过程,包括权限修改和自启动设置,帮助用户快速掌握这款截图工具在Linux系统下的使用方法。(98字)
2025-07-08 16:54:44
294
原创 AI大模型如何重塑软件开发流程?
AI大模型正在深刻改变软件开发流程。这类基于深度学习的模型(如GPT、LLaMA)具备强大的代码生成、自然语言处理能力,可应用于需求分析、代码补全、测试调试等环节,显著提升开发效率和质量。虽然面临代码质量、隐私安全等挑战,但AI大模型与DevOps、低代码平台的结合将推动软件开发迈向更高自动化水平。开发者需理性看待AI工具,将其作为辅助手段而非完全替代传统开发方式。
2025-07-08 11:40:57
646
原创 【YOLOv11-目标检测】01-原理(深入浅出)
摘要:YOLOv11是Ultralytics推出的先进目标检测模型系列,包含从轻量级(YOLO11n)到高性能(YOLO11x)的多个版本。该文介绍了目标检测的基本概念,详细讲解了YOLOv11的安装、预训练模型使用、自定义训练、模型验证与导出等核心功能,并列举了智能零售、工业质检等典型应用场景。文章还提供了提高小物体检测、加速推理等实用技巧,最后指出YOLOv11因其高性能和易用性成为研究和工业应用的理想选择。(149字)
2025-07-08 09:52:54
467
原创 【T宝客户项目解决过程】01-模型训练
本文介绍了基于YOLOv11的图像分类实战项目,帮助淘宝客户从10万+图片中自动筛选卡通和猫类图片。通过准备100+样本/类别,使用YOLO11x-cls模型(Top-1准确率79.5%)进行训练,详细涵盖环境配置(UV+Pycharm)、数据划分、模型训练全流程。最终生成高精度分类模型,可快速实现海量图片的自动分类整理。
2025-06-21 16:39:17
578
原创 【YOLOs-CPP-图像分类部署】05-OpenVino加速
本文详细介绍了如何通过OpenVINO工具包加速YOLOv11模型的推理过程。主要内容包括:1) OpenVINO的安装与环境配置;2) ONNX模型转换为OpenVINO IR格式;3) 代码实现中的模型加载、图像预处理和推理分类流程;4) 项目编译与运行所需依赖配置。通过将模型转换为OpenVINO专用格式并进行硬件优化,显著提升了在Intel CPU上的推理速度,同时保持了原有的ONNX模型兼容性。实验结果表明,该方法能够有效提高YOLOv11的分类效率。
2025-06-06 15:17:28
1069
原创 【YOLOs-CPP-图像分类部署】04-项目优化(加速部署)
本文详细介绍了将YOLO图像分类C++部署项目从CMake迁移到Visual Studio控制台应用的全过程。针对低配CPU性能瓶颈问题,作者通过替换多线程HPP代码为官方实现,并采用448x448固定输入尺寸优化推理速度。项目配置包含OpenCV和ONNX Runtime环境设置,实现了图像批量处理、分类结果显示及结果日志输出功能。关键步骤包括依赖库配置、DLL部署和代码调试,最终在Windows平台成功实现高效CPU推理。该方案显著提升了低配硬件的兼容性,为图像分类任务提供了稳定的部署解决方案。
2025-06-04 13:54:32
111
原创 【YOLOs-CPP-图像分类部署】03-解决报错
在上一篇博客中,我们遇到了一个项目报错的问题,并在GitHub上向作者提问,但两天后仍未得到回复。因此,我们决定自行调试代码。通过修改YOLO11CLASS.hpp和image_inference.cpp源码,成功解决了报错问题。修改后的代码展示了如何在头文件中定义调试宏、引入必要的库、定义分类结果结构体以及实现图像预处理等功能。这些修改确保了代码的稳定性和可调试性,为后续开发奠定了基础。
2025-05-23 10:16:47
144
1
原创 【YOLOs-CPP-图像分类部署】02-跑通项目
本文介绍了使用YOLOv11进行图像分类预测的完整流程。首先需要删除无关的视频和摄像头相关代码文件,并修改CMakeLists.txt文件以适配图像分类任务。然后准备必要的依赖文件(opencv和onnxruntime的dll文件),并将YOLOv11训练好的分类模型和标签文件放入指定目录。接着修改image_inference.cpp代码,使其适用于图像分类任务。最后重新编译项目并运行生成的exe文件,成功实现了图像分类预测功能,虽然存在一些小bug,但整体流程已经跑通,为后续优化奠定了基础。
2025-05-21 15:22:22
787
原创 【YOLOs-CPP-图像分类部署】01-构建项目
本文介绍了如何在YOLOs-CPP项目中实现图像分类模型的部署。此前,YOLOs-CPP项目不支持图像分类,因此我们通过另一个项目实现了CPU版本的图像分类。如今,YOLOs-CPP已支持图像分类模型的部署,因此需要编写新的文章来指导实现。文章首先介绍了如何克隆代码仓库,并详细说明了如何修改image_inference.cpp文件以适配YOLO 11版本。通过注释掉不需要的YOLO 12版本代码,并取消注释YOLO 11版本代码,用户可以轻松切换模型版本。文章还提供了模型路径、标签路径和测试图像路径的配置
2025-05-20 16:17:36
486
原创 如何调优YOLOv11分类模型【参数详解】
在 Ultralytics YOLOv11 分类任务中,model.train() 提供了丰富的可调参数,涵盖了数据路径、核心训练设置、优化器配置、数据增强、正则化、训练控制、日志保存等多个方面。关键参数包括 epochs(训练轮次)、batch(批次大小)、imgsz(图像尺寸)、optimizer(优化器类型)、lr0(初始学习率)等。数据增强参数如 mixup 和 erasing 可提升模型泛化能力,而正则化参数如 label_smoothing 和 dropout 有助于防止过拟合。调参建议包括从
2025-05-19 12:47:55
869
原创 【万字逐行详解】深入解析ONNX Runtime图像分类程序main函数
本文详细解析了一个使用ONNX Runtime进行图像分类的C++程序,涵盖了从模型加载到结果可视化的完整流程。程序首先定义了模型路径、图像目录、标签文件等配置参数,并创建输出目录。接着,程序加载类别标签并获取图像路径,初始化ONNX Runtime环境并配置会话选项。在验证模型文件存在后,程序创建ONNX会话并设置输入输出名称。随后,程序进入批量处理阶段,遍历每张图像进行加载和处理。整个程序展示了现代C++在计算机视觉领域的应用,包括异常处理、性能分析等工程实践。
2025-05-13 11:40:24
89
原创 C++获取目录中所有图片路径的函数get_image_paths解析
本文详细解析了C++函数get_image_paths,该函数用于扫描指定目录并获取其中图片文件的路径。文章从函数签名、逐行代码解析到技术细节,全面介绍了C++标准库、文件系统操作、异常处理等内容。函数通过std::filesystem库遍历目录,检查文件扩展名,并将符合条件的图片路径存储在std::vector中返回。文章还探讨了潜在问题,如扩展名大小写敏感性、性能优化、异常处理不足等,并提出了改进建议,如支持更多图片格式、递归扫描子目录等。通过本文,读者可以深入理解C++文件系统操作和异常处理机制,并掌
2025-05-12 13:03:21
1018
原创 C++函数`load_labels`逐行详解
本文详细解析了一个C++函数load_labels,该函数用于从文件中加载标签。函数通过std::ifstream打开文件,逐行读取内容并存储到std::vector<std::string>中。文章逐行分析了函数的实现,涵盖了文件操作、字符串处理、容器使用等核心概念。函数展示了良好的错误处理实践,如检查文件是否成功打开、记录错误日志,并在失败时返回空向量。此外,文章还探讨了std::vector、std::ifstream、std::string等标准库组件的特性,并提出了可能的改进建议,如预
2025-05-12 11:25:34
595
原创 std::ofstream log_file如何理解?
std::ofstream log_file("debug_log.txt"); 是 C++ 中用于创建文件输出流对象的语法,用于将数据写入指定文本文件。std::ofstream 是 <fstream> 头文件中定义的类,log_file 是用户自定义的变量名,表示文件输出流对象。"debug_log.txt" 是文件名,若文件不存在会自动创建,若存在则默认覆盖内容。通过 log_file 对象可以写入数据,例如 log_file << &q
2025-05-12 11:09:39
344
原创 std::cerr 如何理解?
std::cerr << "Error opening file!" << std::endl; 是C++中用于输出错误信息的语句,属于标准输入输出库的一部分。std::cerr是标准错误输出流,通常输出到控制台,且无缓冲,适合即时显示错误或警告信息。<<运算符用于将数据插入到流中,"Error opening file!"是要输出的错误信息,std::endl则插入换行符并刷新输出缓冲区。与std::cout不同,std::cer
2025-05-12 10:59:37
485
原创 【UltralyticsYolo11图像分类完整项目-05】重构前的代码输出每一个类别的概率+代码详细解析
这篇文章详细解析了使用C++和ONNX Runtime部署YOLOv11图像分类模型的完整流程,包括模型加载、图像预处理、推理执行和结果可视化。重点讲解了如何获取并展示所有类别的预测概率,而不仅仅是最高概率类别。通过代码解析和性能优化建议,帮助开发者理解C++实现与Python的区别,并提供了完整的错误处理和日志记录方案。
2025-05-12 09:48:25
431
原创 【UltralyticsYolo11图像分类完整项目-04】代码重构
本文介绍了如何通过重构代码将功能模块化到头文件中,以简化代码并提高可维护性。具体步骤包括创建头文件 yolo_utils.h 和实现文件 yolo_utils.cpp。头文件中定义了多个类,如 Logger(日志功能)、LabelLoader(标签加载器)、ImagePathLoader(图像路径获取器)、YoloOnnxInference(ONNX 推理器)和 ImageProcessor(图像处理器),每个类都有明确的职责。实现文件中则提供了这些类的具体实现。
2025-05-09 14:47:51
186
原创 【UltralyticsYolo11图像分类完整项目-03】Onnx版Cpu预测C++实现
本文介绍了如何在仅使用CPU的电脑上,使用C++部署图像分类模型。首先,通过Visual Studio新建一个控制台应用程序,并配置OpenCV和ONNX Runtime环境。接着,详细说明了如何在项目中设置包含目录、库目录以及附加依赖项。然后,编写了C++代码,包括加载标签、初始化ONNX Runtime、创建会话、验证模型文件等步骤,并提供了日志记录功能以便调试。最终,实现了在CPU上预测单张图像的分类结果。
2025-05-08 17:05:37
472
原创 【UltralyticsYolo11图像分类完整项目-02】onnx模型转engine格式+TensorRT版Gpu预测C++实现
我们实现了模型的训练和导出为onnx,那么如何在有显卡的电脑上用C++代码实现预测呢?本文来带你实现!
2025-05-08 16:16:23
1139
原创 【操作系统笔记】操作系统的功能
上节课,我们学习了《什么是操作系统》。接下来,我们来看看操作系统有哪些功能?这里讲的内容有两部分,一个是操作系统的目标,另外一个就是操作系统的功能。这两个细节可能会在考试的时候考到,但是最近好些年很少考到了。为了理解,我们还是一起来看一下。
2025-03-23 19:29:47
1015
原创 【操作系统笔记】操作系统概述
您好,欢迎来到AI技术库。操作系统,作为计算机系统的核心,掌握它的基本概念和功能是每个想要入门AI的程序员,和计算机爱好者的必修课。本系列课,我们将带你从零开始,全面了解操作系统的基础知识。
2025-03-23 19:22:24
1007
原创 【小程序开发】完整项目结构长啥样?
Hello,欢迎来到AI技术库。AI写代码的时代,人人都可以成为程序员。欢迎继续【小程序开发】系列课。上节课中,我们学习了【手把手教你小程序开发】什么是大前端?,本节课,我们学习第二篇 小程序的完整项目结构。
2025-03-23 19:15:27
854
原创 【小程序开发】什么是大前端?
Hello,欢迎来到AI技术库。AI写代码的时代,人人都可以成为程序员。本文开始,我们开启一个新的系列课【小程序开发】。本系列课中,我们将带你从零开始,全面了解小程序开发的基础知识。
2025-03-23 19:11:40
589
原创 【保姆级教程】让Conda环境瘦身:三步清理Python项目中的“垃圾库“
场景痛点:在Windows或者linux上用Conda+PyCharm跑通项目后,发现环境里堆积了许多无用的测试库,不仅占用磁盘空间,还可能引发依赖冲突。今天教你用3类方法精准"断舍离"!
2025-03-04 09:54:04
1700
原创 C++学习者终极指南【利器推荐+学习路径+黑暗真相】
"从《C++ Primer》到STL源码,每个教程都说自己是权威,可为什么我学了三个月连智能指针都用不明白?" 这可能是每个C++新手都会经历的迷茫期。现在的学习者,常常陷入一种困境——面对浩如烟海的学习资源,反而丧失了学习的方向感。那些标榜"21天精通"的教程,实际缺乏很多深度内容。
2025-02-24 12:02:08
810
原创 【git-hub项目:YOLOs-CPP】本地实现05:项目移植
ok,经过前3个博客,我们实现了项目的跑通。但是,通常情况下,我们的项目都是需要在其他电脑上也跑通,才对。
2025-02-21 17:27:23
466
原创 教你如何使用Grok 3?【qq邮箱可注册】
DeepSeek已经很火了,相信大家也都体验到了。作为国产AI的代表,它免费又好用,真是让人眼前一亮。但就在你以为它已经够强的时候,Grok 3悄悄来了...今天,我就带你一步步解锁Grok 3!
2025-02-21 12:28:33
7009
原创 【2025年最新版】Hugging Face Access Token创建指南
上一篇文章,我们初步介绍了Hugging Face,本文我们介绍如何创建Hugging Face Access Token。
2025-02-19 11:21:16
2129
原创 【Hugging Face系列篇】01初步介绍:“AI界的GitHub”
Hugging Face 是一个开源机器学习平台,专注于自然语言处理(NLP)和人工智能,提供模型、数据集、工具及协作社区支持,被誉为“AI界的GitHub”。
2025-02-19 09:38:49
1115
【图片批量重命名工具】+exe应用+【支持中文名改为拼音】+【多线程加速处理】
2024-12-10
【图像批量下载】+【拖拽txt文档 或 输入多个图片URL】+【自定义规则重命名】+【windows实用工具】
2024-12-06
【OpenCV-Gpu版本】Windows安装CUDA版OpenCV+编译后的结果
2024-12-05
【字幕SRT翻译器】+【支持多种语言】+【大模型翻译,效果一级棒】+【永久不过期】
2024-11-08
【完整项目,可跑通,C++】mmdeploy部署++Windows+onnx模型+GPU版预测
2024-11-22
办公必备小工具+【筛选符合条件的文件】+【根据文件名和文件格式】
2024-11-15
【MFC软件开发】+【C++OpenCV图像处理】+【完整代码+已经跑通】+带界面
2024-10-14
【完整CV项目】+目标检测+ultralytics+火灾检测+完整数据集+模型训练+windows和linux部署+环境配置
2024-10-28
【20种字体ttf文件】+经典好看
2024-10-21
【windows必备】+实用工具+【一件获取所有文件名】+可复制+归类汇总
2024-10-21
【日常办公必须工具】文件管理+批量移动文件+实用工具+软件开发+windows必备
2024-11-01
【将图像划分为n份工具】
2024-11-04
【Python项目】+图像划分多份+exe工具制作+PyQT5实现
2024-11-08
【Python软件源码】+【SRT视频字幕翻译】
2024-11-08
【windows实用工具】+【统计文件夹内所有文件(包含文件夹)大小】+【方便我们管理文件 】
2024-11-13
【PaddleClas模型训练软件.exe】+【可本地训练】+【训练过程可视化】+【可模型导出】+【可本地测试】+【给测试报告】
2024-11-14
国庆庆祝软件+可直接操作+可修改代码+最新出炉+qt Creater实现+qt6版本
2024-09-06
C++项目+多层图找到最清楚的那一层图像.zip+QT界面【完全可用版】
2024-09-06
python+图像分割【精细化实例分割】+yolov8+训练+预测
2024-09-04
模型训练+人工智能项目+实例分割+mmdetection.rar+完整配置
2024-08-23
【目标检测工具】Labelme转YOLO格式转换工具
2025-07-10
【Yolo11图像分类模型】【Windows平台】【onnx加速部署】【经过测试很稳定】
2025-06-09
【Windows电脑Yolo 11图像分类Openvino加速CPU部署】+【完整C++项目代码】+【可直接替换模型】
2025-06-06
【完整部署代码】YOLOv11图像分类器(ONNX Runtime C++实现)
2025-05-23
完整代码(代码重构后):cppYolo11OnnxPredict.zip【使用yolo11在windows的cpu上部署图像分类模型】
2025-05-09
项目文档:cppYolo11OnnxPredict.zip【使用yolo11在windows的cpu上部署图像分类模型】+完整代码+【可直接替换模型】
2025-05-09
【DeepSeek大模型应用:视频字幕自动生成+双语字幕srt生成】+【效果超级好】+【视频博主必备+软件永久免费】
2025-02-18
【博主必备神器】+【内容创作AI工具】+【视频转博客】+【一经下载,永久免费】
2025-02-12
【GitHub跑通项目:YOLOs-CPP】+【计算机视觉】+【YOLOv11模型】+【windows+Cpp+ONNX+cpu部署】+实例分割
2025-02-18
【人工智能比赛获奖源码】+【PyQt5混元大模型】+【桌面聊天应用】+【效率辅助工具】
2025-02-19
【GitHub跑通项目:YOLOs-CPP】+【计算机视觉:完整项目】+【YOLOv5-v11模型】+【Cpp+ONNX+cpu部署】+【目标检测+实例分割】
2025-02-18
【TensorRT部署YOLO项目:实例分割+目标检测】+【C++和python两种方式】+【支持linux和windows】
2025-02-08
【MFC-PaddleClas图像分类】+带界面C++实现+项目源码
2024-12-30
【可靠,放心下载】百度网盘中PaddleDetMfc相关资料分享+完整代码
2025-01-19
【图像分割领域】+【Segment Anything模型】+【C++本地部署】
2025-01-01
【2025新软件】+文件批量下载器.exe+【批量下载神器】+【Windows必备】
2025-01-07
【Windows-x64-gpu或者cpu预测】编译好的FastDeploy环境
2024-12-30
【批量查看LabelMe标注信息】图像处理+验证工具
2024-12-13
【Python项目源码】+【像素绘制器】+【包含环境配置,code源码,导出步骤,代码注释】
2024-12-12
【exe应用程序】+【像素绘图器】
2024-12-12
纯ubuntu系统安装win 11
2024-12-02
双路3090深度学习工作站,根据现有配置,如何最省钱,并且还发挥最高性能?
2024-09-28
TA创建的收藏夹 TA关注的收藏夹
TA关注的人