对抗攻击样本范数:L0,L2,L∞

本文探讨了L0、L2和L∞范数在深度学习中的作用,包括它们如何衡量样本扰动,以及在对抗样本中这些范数的重要性。特别强调了L2范数在视觉识别中的视觉感知效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1) L0范数 :
非0 元素的个数;
对抗样本 扰动的 非0元素的个数;

2) L2范数 :
各元素的 平方和再开方
对抗样本 扰动的 各元素的平方和再开方,针对图像数据,L2范数越小表示对抗样本人眼越难识别;

3) L∞范数 :
各元素的 绝对值 的最大值;
对抗样本 扰动的 各元素的最大值;

4) 扰动 :
Original + perturbation = Adversarial

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Horizon John

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值