MMSegmentation的使用

本文详细介绍了如何使用命令生成MMSegmentation的配置文件,并提供了配置文件的示例,包括模型结构、数据预处理和训练参数等。之后,文章说明了如何修改配置文件以适应不同的数据集,如斯坦福背景数据集,并注册自定义数据结构。最后,给出了运行训练的命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用比较简单的方式调用 MMSegmentation

一、利用命令生成config文件

利用 tools/train.py 生成config文件。

python tools/train.py configs/deeplabv3/deeplabv3-r50-d8512x51220k_voc12aug.py

其中,config文件名参考configs文件夹下的文件。选取自己喜欢的就好,如:
configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py

最后可以在work_dirs里面得到想要的包含所有配置信息的配置文件:如下得到deeplabv3-r50-d8512x51220k_voc12aug.py
请添加图片描述
其中内容如下:
deeplabv3-r50-d8512x51220k_voc12aug.py,包含了所有需要配置的信息。

norm_cfg = dict(type='SyncBN', requires_grad=True)
data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255,
    size=(512, 1024))
model = dict(
    type='EncoderDecoder',
    data_preprocessor=dict(
        type='SegDataPreProcessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_val=0,
        seg_pad_val=255,
        size=(512, 1024)),
    pretrained='open-mmlab://resnet50_v1c',
    backbone=dict(
        type='ResNetV1c',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        dilations=(1, 1, 2, 4),
        strides=(1, 2, 1, 1),
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        norm_eval=False,
        style='pytorch',
        contract_dilation=True),
    decode_head=dict(
        type='ASPPHead',
        in_channels=2048,
        in_index=3,
        channels=512,
        dilations=(1, 12, 24, 36),
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=1024,
        in_index=2,
        channels=256,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))
dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/'
crop_size = (512, 1024)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(
        type='RandomResize',
        scale=(2048, 1024),
        ratio_range=(0.5, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='PackSegInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
    dict(type='LoadAnnotations'),
    dict(type='PackSegInputs')
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(
        type='TestTimeAug',
        transforms=[[{
            'type': 'Resize',
            'scale_factor': 0.5,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 0.75,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.0,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.25,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.5,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.75,
            'keep_ratio': True
        }],
                    [{
                        'type': 'RandomFlip',
                        'prob': 0.0,
                        'direction': 'horizontal'
                    }, {
                        'type': 'RandomFlip',
                        'prob': 1.0,
                        'direction': 'horizontal'
                    }], [{
                        'type': 'LoadAnnotations'
                    }], [{
                        'type': 'PackSegInputs'
                    }]])
]
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='InfiniteSampler', shuffle=True),
    dataset=dict(
        type='CityscapesDataset',
        data_root='data/cityscapes/',
        data_prefix=dict(
            img_path='leftImg8bit/train', seg_map_path='gtFine/train'),
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations'),
            dict(
                type='RandomResize',
                scale=(2048, 1024),
                ratio_range=(0.5, 2.0),
                keep_ratio=True),
            dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(type='PackSegInputs')
        ]))
val_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='CityscapesDataset',
        data_root='data/cityscapes/',
        data_prefix=dict(
            img_path='leftImg8bit/val', seg_map_path='gtFine/val'),
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
            dict(type='LoadAnnotations'),
            dict(type='PackSegInputs')
        ]))
test_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='CityscapesDataset',
        data_root='data/cityscapes/',
        data_prefix=dict(
            img_path='leftImg8bit/val', seg_map_path='gtFine/val'),
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
            dict(type='LoadAnnotations'),
            dict(type='PackSegInputs')
        ]))
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
default_scope = 'mmseg'
env_cfg = dict(
    cudnn_benchmark=True,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='SegLocalVisualizer',
    vis_backends=[dict(type='LocalVisBackend')],
    name='visualizer')
log_processor = dict(by_epoch=False)
log_level = 'INFO'
load_from = None
resume = False
tta_model = dict(type='SegTTAModel')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
    clip_grad=None)
param_scheduler = [
    dict(
        type='PolyLR',
        eta_min=0.0001,
        power=0.9,
        begin=0,
        end=40000,
        by_epoch=False)
]
train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=4000),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='SegVisualizationHook'))
launcher = 'none'
work_dir = './work_dirs/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024'

需要修改的内容主要如下:

norm_cfg = dict(type='BN', requires_grad=True)
img_dir = 'image'
ann_dir = 'mask'
img_dir_val = 'val/image'
ann_dir_val = 'val/mask'
data_root = '/***/dataset'
dataset_type = 'StanfordBackgroundDataset'
crop_size = (512, 512)

修改后信息如下:其中主要是数据路径和图片大小

norm_cfg = dict(type='BN', requires_grad=True)
img_dir = 'image'
ann_dir = 'mask'
img_dir_val = 'val/image'
ann_dir_val = 'val/mask'
data_root = '/cluster/***/dataset'
dataset_type = 'StanfordBackgroundDataset'
crop_size = (512, 512)

data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255,
    size=crop_size)
model = dict(
    type='EncoderDecoder',
    data_preprocessor=dict(
        type='SegDataPreProcessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_val=0,
        seg_pad_val=255,
        size=crop_size),
    pretrained='open-mmlab://resnet50_v1c',
    backbone=dict(
        type='ResNetV1c',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        dilations=(1, 1, 2, 4),
        strides=(1, 2, 1, 1),
        norm_cfg=norm_cfg,
        norm_eval=False,
        style='pytorch',
        contract_dilation=True),
    decode_head=dict(
        type='ASPPHead',
        in_channels=2048,
        in_index=3,
        channels=512,
        dilations=(1, 12, 24, 36),
        dropout_ratio=0.1,
        num_classes=2,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=1024,
        in_index=2,
        channels=256,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=2,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(
        type='RandomResize',
        scale=crop_size,
        ratio_range=(0.5, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='PackSegInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=crop_size, keep_ratio=True),
    dict(type='LoadAnnotations'),
    dict(type='PackSegInputs')
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(
        type='TestTimeAug',
        transforms=[[{
            'type': 'Resize',
            'scale_factor': 0.5,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 0.75,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.0,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.25,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.5,
            'keep_ratio': True
        }, {
            'type': 'Resize',
            'scale_factor': 1.75,
            'keep_ratio': True
        }],
                    [{
                        'type': 'RandomFlip',
                        'prob': 0.0,
                        'direction': 'horizontal'
                    }, {
                        'type': 'RandomFlip',
                        'prob': 1.0,
                        'direction': 'horizontal'
                    }], [{
                        'type': 'LoadAnnotations'
                    }], [{
                        'type': 'PackSegInputs'
                    }]])
]
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='InfiniteSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img_path=img_dir, seg_map_path=ann_dir),
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations'),
            dict(
                type='RandomResize',
                scale=crop_size,
                ratio_range=(0.5, 2.0),
                keep_ratio=True),
            dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(type='PackSegInputs')
        ]))
val_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img_path=img_dir_val, seg_map_path=ann_dir_val),
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='Resize', scale=crop_size, keep_ratio=True),
            dict(type='LoadAnnotations'),
            dict(type='PackSegInputs')
        ]))
test_dataloader = val_dataloader

val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
default_scope = 'mmseg'
env_cfg = dict(
    cudnn_benchmark=True,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='SegLocalVisualizer',
    vis_backends=[dict(type='LocalVisBackend')],
    name='visualizer')
log_processor = dict(by_epoch=False)
log_level = 'INFO'
load_from = None
resume = False
tta_model = dict(type='SegTTAModel')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
    clip_grad=None)
param_scheduler = [
    dict(
        type='PolyLR',
        eta_min=0.0001,
        power=0.9,
        begin=0,
        end=40000,
        by_epoch=False)
]
train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=4000),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='SegVisualizationHook'))
launcher = 'none'
work_dir = './work_dirs/deeplabv3_r50'

二、修改好配置文件后,需要注册自定义的数据结构

1、在mmseg/datasets中新建文件如:example.py,其内容如下,classes与palette填写自己的数据类名和自定义颜色:

from mmseg.registry import DATASETS
from .basesegdataset import BaseSegDataset

@DATASETS.register_module()
class StanfordBackgroundDataset(BaseSegDataset):
  METAINFO = dict(classes = ('foreground','background'), palette = [[123,43,15],[32,222,113]])
  def __init__(self, **kwargs):
    super().__init__(img_suffix='.png', seg_map_suffix='.png', **kwargs)

2、然后再 mmseg/datasets中的__init__.py中进行导入,如:

from .example import StanfordBackgroundDataset
__all__ = ['...','StanfordBackgroundDataset']

三、运行

python tools/train.py path/to/deeplabv3-r50-d8512x51220k_voc12aug.py
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值