机器学习入门教学——真阳性、假阳性、真阴性、假阴性

1. 真阳性(True Positive, TP)

  • 定义:实际为阳性,预测也为阳性。

  • 例子:一个人确实患病(实际阳性),检测结果也显示患病(预测阳性)。

2. 假阳性(False Positive, FP)

  • 定义:实际为阴性,预测为阳性。

  • 例子:一个人没有患病(实际阴性),但检测结果误判为患病(预测阳性)。

  • 也称为:“误报”或“假警报”。

3. 真阴性(True Negative, TN)

  • 定义:实际为阴性,预测也为阴性。

  • 例子:一个人没有患病(实际阴性),检测结果也正确地判断为未患病(预测阴性)。

4. 假阴性(False Negative, FN)

  • 定义:实际为阳性,预测为阴性。

  • 例子:一个人确实患病(实际阳性),但检测结果错误地判断为未患病(预测阴性)。

  • 也称为:“漏报”或“漏诊”。

类别实际值预测值解释
真阳性 TP阳性阳性预测正确
假阳性 FP阴性阳性误判为阳性
真阴性 TN阴性阴性预测正确
假阴性 FN阳性阴性误判为阴性

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恣睢s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值