YOLOv8_obb训练流程-原理解析[旋转目标检测理论篇]

本文详细介绍了YOLOv8_obb在旋转目标检测中的训练流程,包括标签转换、预测结果解码、RotatedTaskAlignedAssigner以及Loss计算。重点讲解了如何将四个点的标签转换为旋转角度、宽高和中心点,并探讨了预测结果解码过程中的dist2rbox方法和旋转中心点的确定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在旋转目标检测网络中,换了个顺序,先把训练流程捋一遍,然后再取捋一下测试的流程。由下图的YOLOv8l_obb网络结构图可以看到相对于目标检测网络,旋转目标检测网络只是在Head层不相同,在每个尺度特征层中增加了Angle分支(浅蓝色),通过两个卷积组和一个Conv卷积得到得到通道数为1的特征图,1表示的就是每个Grid cell预测的角度。

 1.YOLOv8_obb标签转换

         首先来认识一下v8中的标签格式,如下图所示,标注完经过转换后得到的标签一共有9列,其中第一列是类别,后面八列表示四个角点的X、Y坐标,这四个点不用按照顺序排列。然后对这四个点使用插值来补点,和实例分割标签处理的方法一样,只不过实例分割标签会把点补到1000个,旋转目标检测只需要补充到100个点;最后使用cv2.minAreaRect()对这100个轮廓点进行处理,得到旋转的中心点、宽高以及旋转角度。

        这里要注意一下使用cv2.minAreaRect()生成的中心点、宽高、角度的规律:(1)首先生成的角度

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃鱼不卡次

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值