论文综述:Domain Generalization: A Survey

本文概述了面向非分布数据的领域泛化在机器学习中的挑战,自2011年起的研究进展,涉及领域对齐、元学习、数据增强等方法,以及与相关领域的区别。作者全面回顾了现有方法,展望了未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

面向非分布(OOD,out of the distribution)数据的泛化是人类的一项自然能力但机器的重现却具有挑战性。这是因为大多数统计学习算法强烈依赖于源/目标数据的i.d.假设,而在实践中,源和目标之间的领域偏移是普遍的,领域泛化(DG)的目标是通过仅使用源数据进行模型学习来实现OOD泛化。自2011年首次提出以来,DG的研究取得了很大的进展。特别是,对这一主题的深入研究已经产生了广泛的方法论,例如,那些基于领域对齐,元学习,数据增强,或集成学习,仅举几个例;并涵盖了各种应用,如物体识别,分割,动作识别,行人再识别。本文首次对近十年来的发展进行了全面的文献综述。具体来说,我们首先对DG进行了正式的定义,并将其与领域自适应和迁移学习等其他研究领域联系起来。其次,我们对现有的方法进行了全面的回顾,并根据它们的方法和动机进行了分类。最后,我们通过对未来研究方向的见解和讨论来结束本次调查。

1.INTRODUCTION

在这里插入图片描述

2.BACKGROUND

在这里插入图片描述

2.1 A Brief History of Domain Generalization

在这里插入图片描述

2.2 Problem Definition

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 Related Topics

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 Evaluation and Datasets

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 METHODOLOGIES:A SURVEY

在这里插入图片描述

3.1 Domain Alignment(领域对齐)

在这里插入图片描述

3.1.1 What to Align

在这里插入图片描述
在这里插入图片描述

3.1.2 How to Align

在这里插入图片描述

3.2 Meta-Learning(元学习)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 Data Augmentation (数据增强)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4 Ensemble Learning (集成学习)

在这里插入图片描述

3.5 Network Architecture Design (网络架构设计)

在这里插入图片描述
在这里插入图片描述

3.6 Self-Supervised Learning (自监督学习)

在这里插入图片描述

3.7 Learning Disentangled Representations (学习解耦表示)

在这里插入图片描述

3.8 Invariant Risk Minimization (不变风险最小化)

在这里插入图片描述

3.9 Training Heuristics (训练启发法)

在这里插入图片描述

3.10 Side Information (辅助信息)

在这里插入图片描述

3.11 Transfer Learning(迁移学习)

在这里插入图片描述

4. FUTURE RESEARCH DIRECTIONS

在这里插入图片描述

4.1 Model Arichitecture

在这里插入图片描述

4.2 Learning

在这里插入图片描述

4.3 Benchmarks

在这里插入图片描述

5. CONCLUSION

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值