
数值库numpy
文章平均质量分 50
laufing
[email protected] 邮箱,用于交流学习
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
numpy问题点
小细节np.wherenp.takenp.cumsum np.where import numpy as np y = np.array([1,2,3,4]) r = y%2 == 0 #[False,True,False,True] np.where(r) #把True 的索引取出[1,3] np.nonzero(r) #以上均返回元组 np.take #取出索引为1,3,5的数 y[[1,3,5]] np.take(y,[1,3,5]) np.cumsum y = [1,2,3,4] np.cu原创 2021-03-29 20:38:13 · 152 阅读 · 0 评论 -
简单数据分析案例
简单数据分析加载csv二级目录三级目录 数据集 加载csv 原生的python方式 二级目录 三级目录原创 2021-03-05 15:22:56 · 933 阅读 · 1 评论 -
numpy数组的划分与合并
划分与合并数组的合并数组的拆分其他方式数组的属性 数组的合并 以二维数组为例 #垂直合并 a = np.arange(9) a.shape = (3,3) b = np.random.random((2,3)) c = np.random.random((5,4))*100 r = np.vstack((a,b)) #水平合并 r = np.hstack((r,c)) #深度合并 d = np.ones((5,7)) r = np.dstack((r,d)) 数组的拆分 以二维数组为例 a = np.原创 2021-03-05 12:19:48 · 651 阅读 · 0 评论 -
numpy数组常用操作
数组的常用操作数组的维度改变原数组视图变维复制变维数组的切片掩码操作 数组的维度 改变原数组 import numpy as np a = np.arange(9) # 一维数组 #original dim a.shape --> (9,) #alter dim a.shape = (3,3) #必须size相同 a.shape --> (3,3) #alter dim a.resize(2,2) #可以size 少于原始元素数,多余的数据丢弃 a.shape -->(2,2原创 2021-03-05 11:25:35 · 200 阅读 · 1 评论 -
numpy之random包
random包常用方法随机采样均匀分布 随机采样 np.random.choice(m,20,replace=False,p=[…]) 从 0 - m 个数中随机采样20个,p可以指定概率,指定每个值取到的概率 r = np.random.choice(100,20,replace=False) #等价 r = np.random.randint(0,100,20) 均匀分布 np.random.rand(2,3) 0-1 的均匀分布取值 2x3数组 np.random.randn(2,3) 均值原创 2021-03-02 21:26:47 · 326 阅读 · 0 评论 -
numpy
python的数值计算扩展库numpy 基础内存中的ndim array对象数组的属性numpy 数据类型 numpy 基础 ndim array ,numpy 提供了多维数组 np.array np.arange(0,10,1) np.ones((2,3)) np.zeros(10) np.ones_like(a) 跟a的 shape一样的全1数组 np.zeros_like(a) #安装 #pip install numpy import numpy as np one_dim = np.arra原创 2021-03-02 15:32:55 · 120 阅读 · 0 评论 -
numpy的数据类型
数据类型intfloatboolcomplex int float bool complex原创 2021-03-02 15:32:13 · 435 阅读 · 0 评论 -
numpy 之average
计算平均值等概率的平均加权平均 等概率的平均 import numpy as np a = np.array([1,2,3,8]) avg = np.average(a) #(1+2+3+8)/4 = 3.5 加权平均 即统计学中的期望 所有权重和为1 import numpy as np a = np.array([1,2,3,8]) avg = np.average(a,weights=[0.1,0.2,0.3,0.4]) #1*0.1+2*0.2+3*0.3+8*0.4 = 4.6 #所有原创 2021-02-27 13:15:09 · 1868 阅读 · 1 评论 -
numpy之函数meshgrid
将n个一维数组张成n维网格点 如: x1=np.array([1,2,3])x1=np.array([1,2,3])x1=np.array([1,2,3]) x2=np.array([3,4,5])x2=np.array([3,4,5])x2=np.array([3,4,5]) xx1,xx2=np.meshgrid(x1,x2)xx1,xx2 =np.meshgrid(x1,x2)xx1,xx2=np.meshgrid(x1,x2)原创 2021-02-27 11:50:57 · 191 阅读 · 0 评论