- 博客(1)
- 收藏
- 关注
原创 KNN、决策树、随机森林..调参学习笔记
多次尝试调整max_features的变化区间,可以发现能找到一个值最终为24,在24的左右区间内,调参后的准确率都会降低,所以24就是最优值。4、树模型和树的集成模型的调参目标,都是减少模型的复杂度,把模型往上图的左边移动,尽可能找到泛化误差的最低点。3、对与树模型或树的集成模型来说,树的深度越深,枝叶越多,模型越复杂。到此,能调整的参数就都调整完了,调参也就这样了,总结出模型的最佳参数。到此,能调整的参数就都调整完了,调参也就这样了,总结出模型的最佳参数。1、模型太复杂或者太简单,都会提高泛化误差。
2022-09-19 17:10:20
1004
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人