异常值检测

本文探讨了如何使用箱线图检测电信计费数据中的异常值,并强调了根据数据分布和业务理解处理异常值的方法,包括正态分布下的三倍标准差规则,以及可能的业务价值解读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

plt.figure(figsize=(16,6))
plt.subplot(121)#1行2列正在绘制第一列
plt.boxplot(tcc["MonthlyCharges"])
plt.subplot(122)
plt.boxplot(tcc["TotalCharges"])

在这里插入图片描述

plt.figure(figsize=(16,6))
plt.subplot(211)#2行1列正在绘制第一列
plt.boxplot(tcc["MonthlyCharges"])
plt.subplot(212)
plt.boxplot(tcc["TotalCharges"])

在这里插入图片描述

需要知道的是,对于异常值的检测和处理也是需要根据实际数据分布和业务情况来
判定,一般来说,数据分布越倾向于正态分布,则通过三倍标准差或者箱线图检测
的异常值会更加准确一些,此外,在很多时候,异常值或许是某类特殊用户的标
识,有的时候我们需要围绕异常值进行单独分析,而不是简单的对其进行修改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值