#python机器学习#K-Means聚类(算法介绍+iris实例代码)

K-Means聚类是一种基于相似性的数据统计分析方法,用于将数据集划分为多个类别。算法流程包括距离计算,如欧式距离,以及通过轮廓系数评估聚类效果。在Iris数据集上的应用中,聚类效果得到评估,轮廓系数为0.55,表明聚类效果良好但仍有优化空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-Means聚类

聚类算法概念:

  聚类分析又称群分析,它是研究分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。聚类分析是由若干模式组成的,通常,模式是一个度量的向量,或者是多维空间中的一个点。聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。
  通俗意义上,就是把一个未知分类的数据集合,根据我们的需求根据特征对其进行分类,方便我们进行批量处理和发现数据集合单元之间的相关性。
一个具有注脚的文本。1

 
K-Means算法的基本流程:
 
在这里插入图片描述
 
 
距离计算方法介绍
闵可夫斯基距离

d i s t ( X , Y ) = ∑ ∣ x i − y i ∣ p p dist(X,Y) = \sqrt[p]{\sum|x_i-y_i|^p} dist(X,Y)=pxiyip

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值