- 博客(135)
- 收藏
- 关注
原创 全网最全高光谱数据集打包分享(附下载链接,验证可用)
高光谱遥感技术的应用正在不断拓展,这些数据集为遥感研究人员和开发者提供了丰富的资源,帮助大家更好地进行图像分类、特征提取和数据分析。希望这些数据集能够为你的科研工作带来帮助!注:数据集资源整合自网络,版权归原作者及刊载媒体所有。廖晓龙.基于Transformer架构的高光谱遥感图像分类研究[D].湖南理工学院,2024.DOI:10.27906/d.cnki.gnghy.2024.000099.
2025-08-12 14:32:00
1088
原创 大模型训练、预训练、微调的关系
阶段目标数据要求资源消耗结果预训练学通用语言能力全网无标注文本极高“百科全书”模型微调学特定领域技能少量标注数据低“专家”模型。
2025-08-11 10:03:36
352
原创 0基础教你玩爆目标检测计算机视觉任务
计算机视觉(Computer Vision, CV)是人工智能(AI)的一个重要分支,它致力于让计算机 “看懂” 视觉信息 —— 即像人类一样理解图像、视频等视觉数据中的内容和含义。计算机视觉四大基本任务(分类、定位、检测、分割)
2025-08-08 15:33:29
1067
原创 教程 | 使用SAHI结合supervision进行小目标检测
NMS 通过基于置信度分数消除冗余的检测结果来工作,而 NMM 则将重叠的检测结果合并,以增强对跨越多个图块的对象的表示。它将大图像分割成较小的切片,对每个切片进行推理,然后合并结果,以形成整个图像的最终检测结果。将图块数量增加到 5x5 网格,我们实际上是对图像进行了放大,这样模型就能捕捉到更精细的细节,比如之前可能遗漏的更小、更远的物体。在深入探讨用于小目标检测的SAHI技术之前,先看看经过微调的模型在未经任何预处理或切片的原始图像上的表现是很有帮助的。经过一些测试后,我发现最佳方法是检测人的头部。
2025-08-07 15:24:42
1457
原创 中国地级及以上城市人均GDP数据集(1990-2022年)
SHP格式: 提供包含数据的矢量面要素文件(SHP),空间参考已预设为WGS 1984 / Albers,适用于GIS空间分析及地图可视化。本数据集收录了中国333个地级及以上城市1990至2022年间的人均GDP数据,数据源自《中国城市统计年鉴》等权威来源。Excel格式: 提供包含所有年份、所有城市人均GDP数据的整合Excel工作表,便于统计分析。空间参考: WGS 1984地理坐标系,Albers等积圆锥投影。中国地级及以上城市人均GDP数据集(1990-2022年)
2025-08-05 17:21:43
226
原创 SAM(分割任何内容模型)
Meta AI开发的**SAM(Segment Anything Model)**是一款通用图像分割模型,支持通过点、框或文本提示实现零样本任意目标分割。基于SA-1B数据集(11亿掩码)和视觉Transformer架构,SAM具备强大的泛化能力,无需微调即可应用于新场景。其特点包括交互式分割(点击/框选)和文本引导分割,但存在高分辨率计算成本高的局限。该模型已广泛应用于计算机视觉、AR/VR等领域,提供在线演示功能。
2025-08-04 15:15:26
256
原创 Roboflow获取令牌教程
创建完工作区后,你会看到Roboflow的主界面(左侧有「Projects」「Datasets」等选项)。(免费永久计划),适合个人学习、测试或开源项目(如果选Premium Trial会有14天试用期,但免费计划完全满足你的需求)。等你创建好工作区,进入主界面后,就可以顺利拿到令牌,继续你的代码啦!,才能进入主界面获取认证令牌。这是Roboflow的必经步骤,不用慌~,或者你喜欢的任何名称,不重复就行)。,就能进入Roboflow的。填好名字后,点击页面底部的。
2025-08-04 10:45:02
230
原创 使用高德API规范地址
以下是使用高德API规范地址的str'error''province''city''district''street''number'
2025-03-31 17:39:30
599
原创 Python的rasterio库
遥感数据是通过卫星、无人机等设备获取的地球表面信息,广泛应用于农业、环境监测、城市规划等领域。处理这些数据常常需要对栅格图像进行分析,而Python的rasterio库正是解决这一需求的利器。本篇文章将带你深入了解rasterio库,帮助你掌握遥感数据处理的技巧与最佳实践。rasterio官方文档:https://rasterio.readthedocs.io/en/latest/index.html。
2025-02-28 16:08:54
1598
原创 Xarray的维度魔法
遥感数据通常是多维的,涉及到时空四维数据(经度、纬度、时间、波段)。在这种复杂的数据结构下,如何高效、清晰地进行分析成为一个难题。今天,我们将介绍xarray库,它是处理这类多维数据的强大工具。xarray不仅能让你的代码更加简洁直观,还能使复杂的数据操作变得优雅。接下来,我们将一起探讨如何使用xarray应对遥感数据分析中的各种挑战。Xarray为遥感数据分析提供了强大的支持,使得多维数据处理变得更加直观和高效。它的出现让你能够:🔹 轻松进行时间序列分析🔹 自动并行化大规模数据计算。
2025-02-28 16:08:23
434
原创 全网最全高光谱数据集分享(附下载链接,验证可用)
高光谱遥感技术的应用正在不断拓展,这些数据集为遥感研究人员和开发者提供了丰富的资源,帮助大家更好地进行图像分类、特征提取和数据分析。希望这些数据集能够为你的科研工作带来帮助!需要打包好的数据集,添加小编微信ictnet1无偿获取注:数据集资源整合自网络,版权归原作者及刊载媒体所有。廖晓龙.基于Transformer架构的高光谱遥感图像分类研究[D].湖南理工学院,2024.DOI:10.27906/d.cnki.gnghy.2024.000099.
2025-02-28 11:25:29
3176
原创 Houston 数据集分享
该数据集空间尺寸大小为 349×1905 像素,空间分辨率为 2.5 m/pixel,波长范围为 380-1050 nm,包含了 144 个光谱波段。图来源:廖晓龙.基于Transformer架构的高光谱遥感图像分类研究[D].湖南理工学院,2024.DOI:10.27906/d.cnki.gnghy.2024.000099.技术委员会组织的 2013 年数据融合竞赛。该数据集是由 ITRES CASI-1500 传感器在休斯顿大学校园及其邻近地区所获得,用于 2013 年地球科学与遥感学会数据。
2025-02-28 11:22:12
1602
1
原创 IEEE 官方缩写查询文档分享:助力学术与专业交流
无论是在电路设计中的专业术语缩写,还是在通信协议里的特定词汇简称,都能在这份文档中找到准确的解释。例如,在电力系统领域,“FACTS”(Flexible AC Transmission Systems,柔性交流输电系统)这样的缩写,通过查询文档可以迅速明确其含义,避免因误解而导致的研究和工作失误。它的存在,为我们准确理解和应用 IEEE 相关的专业术语和缩写提供了有力的支持,促进了学术和技术领域的交流与发展。同时,也建议大家在使用过程中,及时关注文档的更新信息,以确保所获取的缩写解释是最新和准确的。
2025-02-22 14:12:24
393
原创 高光谱超分辨率数据集网盘分享Chikusei WDCM CAVE
高光谱成像技术在遥感领域有着广泛的应用,特别是在地质勘查、农业监测、环境保护等领域。随着高光谱数据获取技术的发展,超分辨率(Super-Resolution, SR)方法逐渐成为提升高光谱图像分辨率的热门研究课题。为此,研究人员开发了多种高光谱超分辨率数据集,用于验证和评估不同超分辨率算法的效果。本文将介绍三个与高光谱超分辨率相关的数据集,并分享这些数据集的下载链接。希望通过这些数据集,能为学术研究和算法开发者提供有价值的资源。
2025-02-21 12:15:48
746
原创 教程 | 采用深度学习网络融合高光谱与多光谱(进阶教程)
在遥感领域,高光谱(HSI)和多光谱(MSI)数据的融合能够提升高光谱图像的分辨率,为后续的分类和反演任务提供更加丰富的光谱和空间信息。然而,这一技术的实现需要一系列复杂的步骤,涉及到数据获取、深度学习模型的训练以及后续的数据处理和应用。完整教程PDF文件,请查看。
2025-01-04 13:07:37
543
原创 随机森林进行遥感反演0基础教程
在遥感影像处理中,随机森林算法是一种非常强大的工具。今天我们将详细介绍如何使用随机森林算法进行遥感影像反演,并分享完整的代码和操作步骤。希望这篇教程能帮助到对遥感影像处理感兴趣的朋友们。注意:前期提取数据的教程可以看这篇目录1.如何打开代码运行2.读取建模表格3.变量重要性分析4.选择前5个重要的变量重新建模5.得到模型R2与RMSE值6.反演整个研究区。
2025-01-04 13:00:29
586
1
原创 采用随机森林反演生物量(随机森林算法进行遥感反演通用)
通过这篇文章,我们展示了如何使用Python对筛选后的影响因子进行随机森林建模,并应用于遥感数据反演森林生物量的任务。该流程不仅可以提高预测精度,还能有效处理大规模的遥感数据,为生态监测和森林管理提供重要支持。
2024-10-16 20:30:37
2106
5
原创 随机森林遥感反演详细教程
通过这篇文章,我们展示了如何使用Python对筛选后的影响因子进行随机森林建模,并应用于遥感数据反演森林生物量的任务。该流程不仅可以提高预测精度,还能有效处理大规模的遥感数据,为生态监测和森林管理提供重要支持。
2024-10-16 20:26:52
2466
1
原创 不打开ArcGIS,轻松查看遥感影像信息!
亲爱的读者,欢迎来到这篇特别详细的遥感影像查看教程!你是否曾因为ArcGIS打开速度慢、占用资源大,而迟迟不愿意查看遥感影像的基本信息?你是否想要快速获取遥感影像的大小、波段信息、坐标投影,甚至具体的波段数据?今天,我将带你一步一步地学习如何使用和这一轻便且高效的工具来查看遥感影像——,你就能轻松搞定!🥳让我们开始这次旅程吧!这篇文章会非常详细,确保即使是遥感新手也能跟随理解。如果你已经对遥感和Python有些了解,那就更棒了!🎉。
2024-10-12 11:21:12
1271
原创 制作高光谱与多光谱融合模拟数据集教程
欢迎来到“Python与遥感”系列教程。在本次教程中,我们将带你了解如何通过**光谱响应函数(Spectral Response Function, SRF)**对高光谱图像进行光谱退化,并生成多光谱图像。通过这篇详细的教程,你将学会如何使用Python或matlab操作遥感图像,如何模拟多光谱传感器的响应,最后还会保存处理后的图像数据。适合人群:本教程适合各个水平的读者,特别是那些对遥感图像处理、机器学习、图像降解有兴趣的人。工具:我们将使用(PU)数据集进行操作,并结合Python中的科学计算库如。
2024-10-12 11:18:52
1466
1
原创 python批量对遥感影像进行归一化与数据清洗
来打开遥感影像并读取其行数、列数和波段数,同时提取图像的投影信息和仿射矩阵。接下来我们还需要处理每个波段的数据,确保无效像素被正确处理。接下来,我们将通过具体代码演示,如何使用 Python 对遥感数据进行有效的预处理。遥感数据通常以 GeoTIFF 格式存储,它是一种包含地理信息的多波段图像文件格式。在遥感影像的每个波段中,可能存在传感器无法获取的无效数据。,为了避免影响分析,我们需要将这些无效数据值设为 0 或其他适当的替代值。库,这两个库是本教程中遥感数据处理的核心工具。接下来,开始我们的代码讲解。
2024-09-19 18:27:20
1216
原创 教程:批量将 .tif 文件转换为 .mat 文件
通过这篇教程,你学习了如何使用 Python 编写一个脚本,将 .tif 文件批量转换为 .mat 文件。这种自动化方法不仅节省了大量时间,还可以避免手动转换可能带来的错误。此外,我们还解释了 .tif 和 .mat 文件格式的基本知识,并提供了如何在 MATLAB 和 Python 中读取 .mat 文件的示例。希望你在学习的过程中有所收获,如果有任何问题,欢迎在评论区交流!
2024-08-26 17:12:05
1227
原创 遥感反演保姆级教程:SPSS筛选因子之后如何采用python建模和反演整个研究区?(以反演生物量为例)
通过这篇文章,我们展示了如何使用Python对筛选后的影响因子进行随机森林建模,并应用于遥感数据反演森林生物量的任务。该流程不仅可以提高预测精度,还能有效处理大规模的遥感数据,为生态监测和森林管理提供重要支持。如有更多问题或需要进一步指导,欢迎公众号(Python与遥感)后台联系作者获取更多信息。
2024-08-26 17:02:01
1103
原创 教程:使用Python裁剪TIF影像为多个自定义大小的小块(分割栅格)
读取TIF影像:通过GDAL库读取影像及其地理信息。滑动窗口裁剪:将影像按照指定的窗口大小和重叠率进行裁剪。保存裁剪后的影像:将裁剪后的影像保存为新的TIF文件,同时保留其地理坐标和投影信息。
2024-08-21 17:48:56
2464
原创 多光谱反演全流程-保姆级教学
获取数据这里我们获取的landsat8多光谱和全色数据,分辨率30m数据预处理全色与多光谱融合制作融合数据集,采用卷积神经网络resnet50进行融合。得到15m的多光谱。计算植被指数、纹理特征、dem坡度坡向建模变量导入样本制作训练集和测试集arcgis”多值提取至点“工具生成随机森林建模并筛选变量随机森林反演盖度和产量。
2024-08-05 10:39:24
1068
原创 采用GDAL批量波段运算计算植被指数0基础教程
GDAL(Geospatial Data Abstraction Library)是一个用于处理栅格数据和矢量数据的开源库,是地理信息系统(GIS)和遥感领域的重要工具之一。GDAL介绍及安装。通过本文介绍的方法,使用GDAL库可以高效地批量计算植被指数,大大提高了工作效率。批处理文件的使用使得整个过程更加自动化和简便。希望这篇0基础教程能帮助大家更好地掌握GDAL的使用方法。如果有任何问题或需要进一步的帮助,请在评论区留言。欢迎关注我的公众号:python与遥感,或许里面有你想要的免费教程。
2024-07-29 15:39:05
1210
原创 盐分反演关键:批量计算常用的盐分指数反演变量
GDAL是处理地理空间数据的强大工具,广泛应用于遥感、GIS、环境科学等领域。通过支持多种数据格式和提供丰富的数据处理功能,GDAL成为地理空间数据分析和处理的基础工具之一。
2024-07-29 11:48:18
1749
2
原创 制备高光谱与多光谱融合数据集Pavia University (PU) 用于CNMF算法融合教程
高光谱与多光谱融合是遥感图像处理中的一个技术,用于结合高光谱图像和多光谱图像的优点,从而生成具有高空间分辨率和高光谱分辨率的图像。这种融合技术在遥感、环境监测、农业、城市规划等领域有着广泛的应用。高光谱图像 (HSI)特点:高光谱图像捕捉了光谱的许多细小波段,通常在几十到几百个波段之间,因此具有高光谱分辨率。优点:能够捕捉更多的光谱信息,有助于更准确地识别和分类不同的物质。缺点:空间分辨率较低,即图像的空间细节较少。多光谱图像 (MSI)特点。
2024-07-16 19:48:44
2269
1
原创 MATLAB切片
在 MATLAB 中,切片操作用于访问数组的子集或部分元素,包括矩阵(二维数组)和更高维度的数组。MATLAB 使用圆括号()来索引和切片数组,其语法简单直观。
2024-07-16 10:26:45
1278
原创 融合质量无参考指标 (QNR) 详细介绍
QNR(Quality with No Reference)指标是一种用于评估图像融合效果的无参考质量评价方法。它主要应用于全色图像(PAN)和多光谱图像(MS)融合任务中,用来衡量融合后图像的质量。QNR综合考虑了光谱失真和空间失真,能够在没有参考图像的情况下评估融合效果。
2024-07-09 11:18:46
1958
2
原创 0基础使用GEE下载去云后的Landsat影像,保姆级教程
恭喜你,现在你已经能够使用Google Earth Engine下载并处理Landsat影像了!这个过程虽然涉及多个步骤,但每一步都是为了确保我们可以获得高质量的遥感数据。希望这篇详细教程能帮助你顺利完成项目,享受遥感数据分析的乐趣!如有疑问或需进一步学习,欢迎留言交流,或者直接添加作者微信:ictnet1。欢迎关注我的公众号:python与遥感,获取更多更实用的免费教程分享。
2024-07-06 15:27:43
3915
4
原创 最新(2024年)安装gdal库方法
方法二:https://github.com/cgohlke/geospatial-wheels/releases/tag/v2024.2.18。方法一:直接 conda install gdal。
2024-06-14 11:31:48
2071
3
原创 遥感图像地物覆盖分类,数据集制作-分类模型对比-分类保姆级教程
1.新建shp文件地理坐标系保持和影像一致,面类型2.打开属性表3.添加字段这里分类6类,点击添加值添加添加完毕开始人工选地物类型,制作数据集开始标注,标注的时候可以借助谷歌地图来看标记足够多的样本打开面转栅格工具设置nodata值为15。
2024-06-13 16:28:12
2148
2
原创 从栅格数据中提取训练数据并保存到CSV文件(制作遥感场景分类训练集)
【代码】从栅格数据中提取训练数据并保存到CSV文件(制作遥感场景分类训练集)
2024-06-13 13:42:48
251
原创 从栅格数据中提取训练数据并保存到CSV文件(制作遥感场景分类训练集)
【代码】从栅格数据中提取训练数据并保存到CSV文件(制作遥感场景分类训练集)
2024-06-12 21:46:09
238
python 基础知识,特别特别详细,入门级
2024-01-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人