目录
3.1 新建ultralytics/nn/Conv/DualConv.py
论文 https://arxiv.org/pdf/2405.14458
代码 GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection
DuaIConv 显着降低了深度神经网络的计算成本和参数数量,同时在某些情况下令人惊讶地实现了比原始模型略高的精度。 我们使用 DualConv 将轻量级 MobileNetV2 的参数数量进一步减少了 54%
先放配置文件的修改:
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constant