YOLOv10独家涨点改进:轻量化双卷积DualConv,有效减少参数和涨点

目录

1 C2fUIB介绍

2.DualConv原理

3.如何将Dualconv将入到YOLOv10

3.1 新建ultralytics/nn/Conv/DualConv.py

3.2 注册ultralytics/nn/tasks.py


论文 https://arxiv.org/pdf/2405.14458

代码  GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

DuaIConv 显着降低了深度神经网络的计算成本和参数数量,同时在某些情况下令人惊讶地实现了比原始模型略高的精度。 我们使用 DualConv 将轻量级 MobileNetV2 的参数数量进一步减少了 54% 

 先放配置文件的修改:

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constant
### YOLOv11 DualConv 方法详解 #### 背景与概述 YOLO (You Only Look Once) 是一种高效的实时目标检测算法,在多个版本迭代过程中不断优化性能精度。在最新的改进版中,DualConv 方法被引入以进一步提升模型效率并减少计算开销。尽管当前提到的是 YOLOv9 的改进[^1],但可以推测类似的 DualConv 技术可能同样适用于未来的版本,如假设中的 YOLOv11。 #### 双卷积DualConv)原理 DualConv 是一种轻量化的网络设计技术,通过两个独立的卷积操作实现特征提取的功能增强。具体而言,它将传统的单层卷积拆分为两部分: - **浅层卷积**:负责捕捉低级特征,通常具有较小的感受野。 - **深层卷积**:用于捕获更复杂的高级语义信息,感受野较大。 这种分而治之的设计不仅降低了参数数量,还提升了模型的学习能力。实验表明,采用 DualConv 后,模型的各项评估指标均有所提高。 #### 在 YOLOv11 中的应用 虽然目前尚未有官方发布的 YOLOv11 版本及其对应的 DualConv 实现细节[^2],但从已有研究趋势来看,其应用方式可能会遵循如下模式: ##### 1. 模型结构调整 需对现有 YOLO 主干网络进行调整,以便集成 DualConv 层。这一步骤涉及修改 `modules` 文件夹下的核心组件定义,并确保新加入的 DualConv 结构能够无缝嵌入原有框架之中。 ```python class DualConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DualConv, self).__init__() # 浅层卷积分支 self.shallow_conv = nn.Conv2d(in_channels, out_channels//2, kernel_size=1, stride=stride, padding=0) self.bn_shallow = nn.BatchNorm2d(out_channels//2) self.relu_shallow = nn.ReLU(inplace=True) # 深层卷积分支 self.deep_conv = nn.Conv2d(in_channels, out_channels//2, kernel_size=kernel_size, stride=stride, padding=padding) self.bn_deep = nn.BatchNorm2d(out_channels//2) self.relu_deep = nn.ReLU(inplace=True) def forward(self, x): shallow_out = self.relu_shallow(self.bn_shallow(self.shallow_conv(x))) deep_out = self.relu_deep(self.bn_deep(self.deep_conv(x))) return torch.cat([shallow_out, deep_out], dim=1) ``` 上述代码展示了如何构建一个基础的 DualConv 类,其中包含了两条不同的路径来处理输入数据。 ##### 2. 配置文件更新 为了支持新的架构变化,还需要同步更改 YAML 格式的配置文档。主要体现在以下几个方面: - 添加 DualConv 到主干网络描述; - 设置相应的超参选项,比如通道数、核大小等。 ##### 3. 训练流程适配 最后一步是对整个训练脚本做必要的改动,包括但不限于加载自定义模块以及重新初始化权重矩阵等内容。这些工作都需要开发者依据实际需求灵活调整。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值