李沐实用机器学习——数据标注

本文介绍了半监督学习中处理无标签数据的两种主要方法:self-training 和 Active Learning 结合 self-training。self-training 是一种典型算法,通过先训练模型,然后用模型预测未标记数据并将其反馈到训练集中来迭代提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、半监督学习

(一)无标签数据的假设

  • 相似特征同label
  • 同一类同label
  • 流行假设:数据的复杂度往往比呈现出的小得多,因此可以做降维处理

在这里插入图片描述

(二)怎样处理无标签数据?

1、self-training

self-training是一种典型的半监督学习算法
先训练,再预测,再融合。关键在于保证高置信度,可以用到复杂的模型。
在这里插入图片描述

2、Active Learning+Self-training

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值