- 博客(11)
- 收藏
- 关注
原创 最小二乘问题的二分之一哪来的
加入1/2的核心目的是通过数学形式的优化,简化微分、概率模型推导和数值计算过程,同时不改变最小二乘问题的本质解。这一做法是数学工具与实际问题结合的典型优化策略。
2025-03-28 09:32:04
589
原创 高斯-牛顿法原理与C语言实现
非线性最小二乘问题形式化表示为:minx∑i=1m[ri(x)]2\min_x \sum_{i=1}^m [r_i(x)]^2xmini=1∑m[ri(x)]2其中:对残差函数进行一阶泰勒展开:ri(x+Δx)≈ri(x)+Ji(x)Δxr_i(x+\Delta x) \approx r_i(x) + J_i(x)\Delta xri(x+Δx)≈ri(x)+Ji(x)Δx其中 ( Ji=[∂ri∂x1,...,∂ri∂xn]J_i = [\frac{\partial r_i}
2025-03-02 00:29:35
1031
1
原创 用「家庭关系」理解贝叶斯网络:一张会推理的关系网
通过这样的生活化理解,贝叶斯网络就是概率统计网,像一张会"思考"的关系地图,属于有向网络,帮助我们看到事件之间的隐藏联系。它不仅是人工智能的基础工具,更是训练逻辑思维的好方法。就像侦探通过线索破案,贝叶斯网络教会我们如何用概率线索进行智能推理。
2025-03-01 15:38:32
792
原创 自动驾驶-传感器融合之最小二乘问题
f(x+Δx)2≈f(x)2+J(x)Δx+12(Δx)TH(x)Δx f(x + \Delta x)^2 \approx f(x)^2 + J(x) \Delta x + \frac{1}{2} (\Delta x)^T H(x) \Delta x f(x+Δx)2≈f(x)2+J(x)Δx+21(Δx)TH(x)ΔxΔx∗=−JT(x) \Delta x^* = -J^T (x) Δx∗=−JT(x)Δx∗=argminf(x)2+J(x)Δx+12(Δx)TH(x)Δx \Delta x^* =
2025-03-01 15:36:01
1874
原创 使用Cursor快速理解大型代码项目的步骤指南
通过这种结构化分析流程,可将理解大型 ROS 项目的时间缩短 60% 以上。实际测试中,对包含 15 个 package 的 SLAM 项目完整解析平均耗时 23 分钟。运营作者:easysports商务合作VX:easysports(请注明来意)
2025-02-21 17:06:55
1123
原创 量子计算机 vs 传统计算机:为什么量子计算能「大幅提高」计算能力?
量子计算机不是传统计算机的替代品,而是解决特定复杂问题的新工具。就像起重机与镊子的关系——当需要搬动整座山峰时,量子计算的「指数级加速」优势才会真正显现!运营作者:easysports商务合作VX:easysports(请注明来意)
2025-02-21 10:48:37
2223
原创 从入门到精通:AI代码助手Cursor完全指南
fill:#333;stroke:1;fill:none;important;important;important;important;important;important;important;important;important;important;important;important;important;important;important;important;调用AIEngine。
2025-02-20 14:29:47
881
原创 卡尔曼滤波教会我们的人生智慧:如何在不确定中优雅前行
接受噪声:理解不确定性是系统的固有属性动态平衡:在坚持与妥协间寻找最优路径持续迭代:把人生看作永远处于Beta版的进化系统“最好的决策不是最精确的预测,而是建立最能适应现实的响应机制——这既是卡尔曼滤波的精髓,也是应对人生的终极智慧”
2025-02-19 22:28:08
2069
原创 C++虚函数的设计原理:为什么基类指针能调用子类函数?
两级间接访问:通过vptr -> vTable -> 函数地址实现动态跳转编译与运行时分工编译时:生成vTable运行时:通过vptr动态查表多态的本质:用相同的代码形式(基类指针)操作不同的具体实现现实类比把vTable看作餐厅菜单,vptr就是服务员手里的当前菜单。无论顾客(调用者)怎么点菜(调用虚函数),实际执行的总是当前菜单(对象实际类型)对应的菜品(具体实现)!
2025-02-18 17:49:10
973
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人