自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(261)
  • 收藏
  • 关注

原创 【问题思考】为什么SVM中的w和超平面是垂直的?【SVM】【gemini生成】

理解为什么与超平面垂直,是理解 SVM 几何性质的关键。我们可以从数学和直观两个角度来解释。

2025-08-27 14:41:10 439

原创 【问题思考】为什么需要文件后缀?(gemini完成)

您的这个问题问得很好,它涉及到了文件系统和操作系统的基础知识。是的,您完全正确。文件名的后缀(比如.txt.jpg.py.m)主要是为了帮助操作系统和用户识别文件的类型,从而选择合适的应用程序来打开和处理它。

2025-08-21 16:27:14 233

原创 【问题思考】二分查找对比三分查找(任意点查找)的优越性(熵的角度)【gemini完成】

这是一个非常深刻的问题,它将算法的优越性与信息论的基本原理——熵——联系在了一起。让我们通过一个具体的例子来精确计算这一点。

2025-08-21 15:29:56 664

原创 【问题思考总结】CART树如何剪枝?从CART树的生成到剪枝以及为什么CTt一定小于Ct?【图文】

我想的太多了,总的来说!这里生成算法和剪枝算法都是一样的,生成的时候是一个基尼系数递减的过程,剪枝的时候是基尼系数递增的过程,但是因为有了α的存在,针对于不同的α,生成的树是不同的,对应了不同的对模型复杂度的重视程度。我现在知道的大概就是这些!我觉得这样的说法是大概正确的,在我的认知里,如果里面哪里有错误,恳请不吝赐教!

2025-08-01 12:50:21 464 1

原创 关于回归决策树CART生成算法中的最优化算法详解

首先,一共比如有M个特征,N个样本,对于每一个特征j,遍历其中的N个样本,得到N个值中,最小的值,作为这个特征的最优切分点,而其中的c1,c2是可以直接得到的。然后,遍历这M个特征,得到M个值,取其中最小的值对应的j和s作为最优切分变量和最优切分点分点。

2025-07-25 21:59:54 335

原创 【问题思考总结】两个向量之和的二范数公式是什么?

不过似乎还有点懵,留个帖子,后续欢迎大家前来讨论,我们一起进步。

2025-07-09 23:04:00 232

原创 为什么要有正则化项?

也就是说,正则化项实际上就描述了模型的参数量,因此,正则化项可以帮助模型减少复杂度(如果复杂度过高,正则项过大,损失函数大,将会被优化)。因为模型复杂度越高,越容易过拟合。过拟合就是由于模型参数量过大,引起的。常常听说正则化项,L1,L2范数,却从未知晓,为何要有正则化项。实际上,正则化的项描述了模型的复杂度。为什么要描述模型复杂度?

2025-05-20 20:48:53 160

原创 从比特到彩色图像到光盘

而光盘,刻录一个bit大约长度是1微米,而一个轨道就按10厘米来说,一个轨道就可以刻录100000个bit,而光盘的轨道间的间距是1.6微米,也就是说,一个光盘有上万个轨道,那么一个轨道可以刻录12.5KB,1万个轨道就可以刻录125MB,那么小小的一个光盘,可以记录几十张精美的图片,多么神奇!一张图片比如有1000*1000个像素点,每个像素点有三个通道,每个通道有256个状态,一个像素点就是3B(24bit),那么一张图片就是3MB这么算。由01序列,我们做出了一张图片!

2025-05-09 23:50:16 114

原创 干扰功率和数据功率

在信号实际传播过程中,常常会由于路径损耗和多径衰落等因素影响,受到减益,都是,值越小,那么影响越小。实际功率低于参考功率就是负数。

2025-03-05 15:44:33 280

原创 研究行业可以去哪里寻找报告

研究行业可以去哪里寻找报告

2025-03-04 14:53:42 248

原创 频谱和频段的区别,以调频广播举例说明

频谱与频段以广播举例说明

2025-03-03 10:12:05 205

原创 凸函数和凹函数的定义怎么来的?

凹凸函数的定义

2025-02-27 20:51:05 264

原创 香农定理及其在实践中的应用

香农定理

2025-02-27 18:40:24 171

原创 HkHHk,矩阵乘以自己的共轭在通信领域的应用

HkHHk

2025-02-27 18:12:59 141

原创 什么是瑞利衰落系数

瑞利衰落

2025-02-27 16:07:20 146

原创 MRT和MBF的区别

MRT

2025-02-27 10:27:56 130

原创 前处理SIR和后处理SIR的区别

后处理SIR通常比前处理SIR更高,因为接收端的处理可以增强信号,并抑制干扰。

2025-02-27 10:16:43 161

原创 什么是SVD

SVD

2025-02-27 09:58:58 141

原创 信干比SIR和信噪比SNR的区别

SIR和SNR的区别

2025-02-26 22:08:56 235

原创 MIMO的多种模式(STBC、OLSM、CLSM、MBF、MRT)

MIMO的多种模式(STBC、OLSM、CLSM、MBF、MRT)

2025-02-26 21:38:27 125

原创 什么是蜂窝网络架构?

蜂窝网络

2025-02-26 21:29:19 154

原创 什么是MIMO网络架构

MIMO技术

2025-02-26 20:35:35 140

原创 URLLC和eMBB对比

URLLC

2025-02-26 19:38:31 122

原创 什么是非凸优化问题?

在信号处理中,许多信号恢复和图像处理问题也是非凸优化问题。在控制理论中,许多最优控制问题也是非凸的。在运筹学中,许多生产计划和资源分配问题也是非凸的。,因为非凸问题可能存在多个局部最优解,而这些局部最优解不一定等于全局最优解。非凸优化模型是指在优化问题中,目标函数或约束条件不满足凸性条件的模型。:如梯度下降法、牛顿法、拟牛顿法等,这些算法通常只能找到局部最优解,但计算效率较高。:如粒子群优化、蚁群优化等,这些算法通过模拟自然现象来寻找问题的解。:将非凸问题转化为凸问题来求解,例如通过线性化、二次化等方法。

2025-02-26 17:50:55 589

原创 三级服务器的简单辨析

三级服务器的简单辨析

2025-02-25 16:49:02 134

原创 什么是经验回放?

强化学习

2025-02-25 11:00:10 111

原创 常用强化学习算法,衍生关系,核心思想,改进方法等

请以表格形式给出强化学习算法的对比总结,包含优缺点等,有什么问题,别的算法怎么解决的,哪个算法是哪个算法衍生的,包含:Q-learning,DQN,DDQN,Dueling DDQN,A3C,PPO等

2025-02-25 10:45:53 375

原创 什么是Jaccard相似度?

Jaccard相似度如何计算

2025-02-25 10:26:29 102

原创 什么是MetaBluePrint

什么是MetaBluePrint

2025-02-24 18:27:02 445

原创 VNF,网络切片,MetaSlicing 浅析

三种易混淆概念对比

2025-02-24 17:39:54 152

原创 什么是将应用放在边缘服务器上创建?应用不是在用户手机上吗?边缘计算究竟如何优化?通过两个问题来辨析

边缘计算在计算上,有简单的计算能力,可以快速处理用户的请求,在存储上,相当于数据中心的cache,在网络上,因为可以在一定程度上进行本地计算,这节省了带宽,降低了网络延迟。

2025-02-24 15:57:34 511

原创 5G网络切片辨析(eMBB,mMTC,uRLLC)

URLLC有三大应用场景,分别是eMBB(增强型移动宽带)、uRLLC(高可靠低延时通信)和mMTC(海量机器通信)。增强型移动宽带(eMBB):需要关注峰值速率,容量,频谱效率,移动性,网络能效等这些指标,和传统的3G和4G类似。海量机器通信(mMTC):主要关注连接数,对下载速率,移动性等指标不太关心。高可靠低时延通信(uRLLC):主要关注高可靠性,移动性和超低时延,对连接数,峰值速率,容量,频谱效率,网络能效等指标都没有太大需求。

2025-02-24 09:41:06 2084

原创 SARSA算法是什么?怎样作用?逐步说明SARSA更新步骤。

SARSA首先是从st开始,选动作at,观察到了奖励rt+1,和下一个状态st+1在st+1中选择下一个动作at+1。并进行更新。解答:默认是最优路径下的奖励函数,这玩意有点先验啊,我怎么提前指导是两步后是最优呢?有点懵,先记住吧,似乎是学出来的最优路径。综合考虑了即时奖励和未来的潜在奖励。什么是td误差?通过增加当前状态的价值估计,我们使价值函数更接近实际的预期回报,从而提高模型的准确性。当前的价值估计应该和预期相等。!

2025-02-19 18:47:52 691

原创 什么是ε-greedy算法

强化学习中的ε-greedy算法,用于在已知最优外增加随机探索的可能性

2025-02-19 12:13:37 169

原创 通信资源解释表

信道矩阵:是一个复数矩阵,用于描述信号在传输过程中经过的信道特性,包括信号的衰减和相位变化。它不是一个确定的数,而是一个矩阵,其中的每个元素都是一个复数,表示信号从一个发射天线到一个接收天线的传输特性。相位变化:信道矩阵的每个元素的辐角(即复数的角度)表示信号在传输过程中的相位变化。信道增益:信道矩阵的每个元素的模(即复数的绝对值)表示信号在传输过程中的衰减程度。信号检测:通过信道矩阵,可以对接收到的信号进行检测和解调,提高信号的检测精度。相位变化:相位变化会影响信号的叠加效果,可能导致信号的增强或减弱。

2025-02-08 13:57:03 475

原创 【流程梳理】MSP,通信基站,渲染服务器,HMD如何进行交互【VR】

服务流程

2025-02-08 13:00:28 119

原创 【大面了解】基站,服务器和用户如何进行交互?【VR业务为例】

基站和服务器以及用户之间的交互

2025-02-08 12:15:43 114

原创 【问题思考总结】什么是带宽?为什么有了传输功率还需要带宽?

带宽是保证传输的速率,保证低延迟。而功率是保证传输数据的强度,保证低误码率。

2025-02-08 12:07:34 318

原创 【大面了解】什么是交替最小二乘法(ALS)?有什么用?

如上图所示,ALS可以将一个稀疏矩阵变为稠密矩阵。那么,ALS是如何做到的呢?首先,随机初始化两个矩阵并构建损失函数,其次,通过不断调整U,P矩阵内元素的大小,来最小化损失函数。最后,当损失函数最小化后,两矩阵相乘,得到的矩阵,就是稠密矩阵,即里面的缺失值,都被填补完毕了。

2025-02-07 13:50:09 577 1

原创 【问题思考总结】什么是正则化以及为什么需要正则化?(L1 L2)

为什么需要正则化?

2025-02-06 17:31:47 222

王道机试习题集-大部分AC代码(自用)

王道机试习题集-大部分AC代码(自用)

2025-03-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除